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1
Introduction

1.1 Drying stains

When you spill a drop of coffee or tea on a table and let it dry, it leaves behind a
distinct stain (see Fig. 1.1). All the coffee particles, which were initially uniformly
distributed over the drop, have collected into a dark ring at the edge of the drop. This
so-called coffee-stain effect was first investigated by Robert Deegan and co-workers
[1, 2]. They discovered how particle transport occurs in drying drops where the edge
of the drop, the contact line, is pinned to the underlying substrate, e.g. the table top.
It turns out that a strong radially outward flow is generated inside such an evaporating
drop. This flow drags the particles along towards the contact line, where the water
evaporates while coffee particles are left behind and form the ring stain. The coffee-
stain effect is not specific for coffee and tea, but it can happen with any type of
colloidal suspension of tiny particles such as ink, paint, salty water, and blood, as
shown in Fig. 1.2.

Drying stains are not only encountered in daily life, they also appear in many
industrial applications. In the coating and printing industry, the challenge is to pre-
vent the formation of ring-shaped drying stains in order to obtain uniform coatings or
homogeneously dried ink drops [1, 2, 4]. Ring-stain formation is also problematic in
the analysis of DNA and proteins in microarrays: the inhomogeneous distribution of
molecules in the dried spots leads to spurious changes in the signal intensity [5–7], as

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The coffee-stain effect demonstrated by tea stains on a desk: when the tea
drop has dried, a dark ring of tea particles is left behind.

Figure 1.2: (a) Drying stains of blood drops (adapted from Brutin & Sobac [3]), (b)
stains formed by dried water colour paint, (c) pattern formation on a ceiling in the
Molvense Erven, Nuenen (NL).
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(b)(a)

Figure 1.3: (a) Ring-stain formation in a DNA microarray leads to spurious changes
in the signal intensity (adapted from Blossey & Bosio [6]). (b) Stripe patterns of
ordered silica particles formed by evaporation (adapted from Watanabe et al. [19]).

demonstrated in Fig. 1.3(a). Recently, it has been shown that this unwanted ring-stain
formation can be suppressed by using non-spherical particles [8] or by shaking the
drying drops with strong electric fields [9]. Stain formation by drop evaporation can
however also be useful: it provides a way to self-assemble small particles into a fine
pattern on a scale where direct manipulation is impossible [10–12], see Fig. 1.3(b). In
this way, evaporation is used to generate self-assembled monolayers of tiny particles
[13] and colloidal crystals [14–18].

Hence, pattern formation by evaporating drops can be disadvantageous when it
leads to unwanted ring-stains, but it can also be used to self-assemble particles into
tiny structures. In order to make use of the coffee-stain effect, one needs to be able
to predict and control the stain formation. At present, there is no way of predicting
beforehand the structure of the stain that will form, due to a lack of understanding of
the basic physical mechanisms that play a role during drop evaporation. In particular,
to know how an evaporating drop can shape a pattern, the physics of drying drops
and their internal fluid flow has to be understood. The purpose of the work described
in this thesis is therefore to address the fundamental physics of drop evaporation,
evaporation-driven flow inside the drying drop, and the subsequent particle transport.

1.2 Physics of drying drops

We first discuss the basic physical mechanism of evaporation. When a liquid drop is
deposited onto a substrate, such as a coffee drop on a table top, it attains a spherical-
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(a)

θ

(b)

substrate

Figure 1.4: (a) A water drop on a glass slide with a contact angle θ of about 45◦.
The reflection of the drop in the substrate illustrates the sharp edge that appears when
θ < 90◦. The arrows indicate the non-uniform evaporative flux from the surface of
the drop. (b) Rapid dehydration from sharp edges causes potato wedges to burn at
the edges first (adapted from Bocquet [20]).

cap shape with a contact angle θ with the substrate. Fig. 1.4(a) shows a picture of
such a macroscopic water drop on a glass slide. Evaporation causes the volume of the
sessile drop to decrease, until eventually a dry spot remains. There are three physical
mechanisms that can influence the drying rate of a sessile drop. The first mechanism
is the phase change from liquid to vapour: the rate at which molecules can cross the
liquid-air interface [21, 22]. The second mechanism is the transport of the vapour
molecules away from the drop in the surrounding air. This transport can be purely
diffusive [1, 23, 24], or a combination of diffusive and free convective transport [25].
The third rate-limiting step is the evaporative cooling and heat transfer to the liquid-
air interface [22, 26–28]. In this thesis, we focus on macroscopic sessile water drops
under atmospheric conditions. In this case, the evaporation rate is usually determined
by the diffusive transport of water vapour in the surrounding air [1, 2, 21, 23, 24].

1.2.1 Singular evaporative flux

Under atmospheric conditions, liquid molecules rapidly cross the liquid-air interface,
such that the air just above the drop becomes saturated with vapour. If the surround-
ing air far from the drop surface is not saturated, the vapour diffuses outward. The
rate at which the drop volume decreases is determined by this diffusive transport of
vapour away from the drop. Due to evaporation, the liquid-air interface is not sta-
tionary, but slowly moves as the volume of the drop decreases. The time-dependent
vapour concentration c in the air surrounding the drop is governed by the unsteady
diffusion equation

∂c
∂ t

= D∇
2c, (1.1)
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where D is the diffusion constant for vapour in air. However, the evaporation-induced
motion of the drop surface is typically much slower than the diffusion time for the
vapour transport, so that the time-dependent term in (1.1) can be neglected and the
quasi-steady concentration field is given by

∇
2c = 0. (1.2)

The strength of the evaporative flux J from the drop surface is determined by the
gradient in the vapour concentration according to

J =−D∇c. (1.3)

To find the evaporative flux from the vapour concentration field, (1.2) is solved
subject to the boundary conditions that the vapour concentration equals the satu-
rated vapour concentration csat just above the drop surface, and c∞ far away. When
c∞ < csat , a diffusive outflux arises and the drop evaporates. A third boundary condi-
tion is that the substrate on which the drop is deposited is impermeable to the vapour.
The evaporative flux is found from (1.3). It turns out that this evaporative flux is not
uniform, but stronger at the pointy edge of the drop if the contact angle is below 90◦,
as indicated by the arrows in Fig. 1.4(a). To understand the origin of this non-uniform
evaporative flux, we focus on the region close to the contact line of the drop. Math-
ematically the impermeability condition is equivalent to mirror-imaging the drop, as
shown in Fig. 1.4(a). From the picture of the drop and its reflection it is clear that the
drop has a pointy, singular shape near the contact line. The shape of the drop near the
contact line can be approximated by a wedge geometry and a self-similar solution to
the evaporative flux can be obtained, which scales as [1]

J ∼ D∆c
R

(
ρ

R

)λ (θ)−1
, (1.4)

with ∆c = csat − c∞, R the drop base radius, ρ the radial distance to the contact line,
and

λ (θ) =
π

2(π−θ)
. (1.5)

Hence, for contact angles below 90◦ (when the edge is sharp) λ < 1, and the evap-
orative flux diverges as the contact line is approached. The sharper the edge of the
drop, the stronger this divergence. For very flat drops (θ � 90◦) a square-root di-
vergence of the evaporative flux is found. The mathematical problem of finding the
vapour concentration field around a sharp edge has an electrostatic equivalent: the
electrostatic potential around a charged conductor. At the sharp tip of e.g. a light-
ning rod all equipotential lines come close together, which leads to a divergence of
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the electric field and an accumulation of charge on the tip of the rod. Similarly, all
the iso-concentration lines come close together at the contact line of an evaporating
drop with a contact angle below 90◦, so that the evaporative flux diverges. This rapid
dehydration from sharp edges is also the reason why potato wedges in the oven burn
at the edges first, as shown in Fig. 1.4(b) [20].

1.2.2 Lifetime of a liquid drop

To find the lifetime of a sessile drop, the evaporative flux from the entire drop surface
has to be known. However, without knowing the exact expression for the evaporative
flux, one can estimate the rate at which the drop volume decreases from dimensional
arguments. The typical drop volume V scales as V ∼ R3. The time scale on which
vapour transport occurs is the diffusion time td = R2/D. Hence, the rate of volume
change scales as

dV
dt
∼−R3

td
=−DR, (1.6)

which implies that the rate of volume change is proportional to the perimeter of the
drop, and not to its surface area.

The way the liquid-air interface moves as the drop volume decreases depends on
the mode along which the evaporation takes place. Drop evaporation can occur along
two basic modes [2, 29–31]. The first mode is the constant contact-angle mode,
in which the contact line is free to move and the contact area of the drop with the
substrate decreases, see Fig. 1.5(a) . The second mode is the constant contact-area
mode, in which the contact line is pinned and the contact angle of the drop slowly
decreases, as shown in Fig. 1.5(b). If the contact line is free to move, we can obtain
the time-dependent drop radius by using that for a constant contact angle

dV
dt
∼ R2 dR

dt
, (1.7)

owing to the self-similarity of the spherical cap in case the contact angle does not
change. Combining (1.6) and (1.7) we find that the drop radius

R(t)∼
√

D(t f − t), (1.8)

with t f the total evaporation time. This means that the drop radius very rapidly shrinks
during the final stages of evaporation [25, 32].

In case the contact line is pinned, the drop radius is constant in time and the rate of
mass loss at each instant is solely dependent on the contact angle. The expressions for
the rate of mass loss and the evolution of the contact angle have to be obtained from
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(a) (b)
JJ

(a) (b)
JJ

Figure 1.5: (a) A drop evaporating in constant contact-angle mode: the contact area
decreases while the contact angle remains constant. The flow in the drop has an
outward contribution that comes from the evaporative flux J from the drop surface
and an inward contribution that comes from the receding motion of the contact line.
(b) A drop evaporating in constant contact-area mode: the contact angle decreases
while the contact area remains constant. The evaporative flux from the surface of the
drop generates a radially outward flow.

the drop geometry and the exact solution to the evaporative flux from the drop surface.
In the limit of small contact angles (θ � 90◦) simple analytical expressions for this
evaporative flux can be found [2]. Finding the evaporative flux from a spherical-cap
shaped drop of arbitrary contact angle however is more complicated and involves the
use of non-trivial special functions [24, 33]. Until now, the validity of these diffusion-
based evaporation models has only been investigated for drops with contact angles
below 90◦ [2, 23]. In this thesis, we will study drops on superhydrophobic substrates,
where the initial contact angle� 90◦.

1.3 Fluid flow in drying drops

In drying coffee drops, the evaporative flux from the drop surface drives a radially
outward flow inside the drop which transports the coffee particles. When the contact
line of the drop is pinned, as in Fig. 1.5(b), the liquid that evaporates from the contact
line region must be replenished by liquid from the interior of the drop [1, 2]. A
capillary mechanism drives the flow: in order to maintain the drop’s spherical-cap
shape dictated by surface tension, a compensating flow is required to refill the liquid
that evaporates from the pinned contact line. Pinning of the contact line occurs by
pre-existing roughness of the substrate. On top of this, suspended particles that arrive
at the contact line due to the coffee-stain effect re-inforce the pinning, and thereby
generate a self-pinning mechanism [34].

The amount of flow inside an evaporating drop can be calculated from mass con-
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J
h(r)

Q(r)
r

z

Figure 1.6: Schematic representation of an axisymmetric drop that is evaporating,
described in a cylindrical coordinate system (r,z). The evaporative flux J from the
drop surface drives a flow Q(r) inside the drop with height profile h(r). The dashed
lines indicate the control volume of width dr.

servation once the evaporative flux (1.3) is known. To illustrate this, we consider an
axisymmetric drop with a pinned contact line, described in a cylindrical coordinate
system (r,z), see Fig. 1.6. Inside this drop, we define an infinitesimally small control
volume of width dr, located at a distance r from the drop center. Mass conservation
requires that the rate of change of the amount of liquid inside this control volume
equals the net inflow of liquid into the control volume, minus the amount of liquid
that has evaporated from the drop surface. This can be expressed as [2]

∂h
∂ t

=−1
r

∂

∂ r
Q− 1

ρ`
J, (1.9)

where h(r, t) is the local drop height, t the time, Q the volume flow and ρ` the liquid
density. Hence, the decrease in drop height of a volume element equals the evapo-
rative flux through the free surface of the element plus the net outflow to the neigh-
bouring elements.

In the present context, we use the mass conservation (1.9) to compute the liquid
flow Q inside the drop. Namely, ∂h/∂ t can be obtained by combining the total rate of
volume change (as explained in the previous paragraph), and the assumption that the
drop shape remains that of a spherical cap. The evaporative flux is known from the
vapour concentration field (1.3), and by integration over the drop surface the total rate
of volume change can be found. Hence, once the evaporative flux is known, (1.9) is
an equation for the flow inside the drop. For relatively flat drops, with a contact angle
θ � 90◦, the expressions for the drop volume and evaporative flux are simple and the
flow can be obtained from (1.9) by integration [1]. From drops of arbitrary contact
angle however, this is much more complicated [24], and closed-form expressions
cannot be obtained.

Although the volume flow inside the drop can be found from mass conservation,
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the exact velocity profile inside the drop remains unknown. In the small contact-
angle regime, the lubrication approximation is often used to describe the velocity
field inside the drop [35, 36]. However, even for relatively flat drops (θ � 90◦)
the validity of this approximation near the contact line, where the evaporative flux
diverges, has been questioned [37]. On top of that, Marangoni stresses originating
from temperature differences in the drop could lead to additional recirculation near
the contact line [38–40]. Furthermore, if the contact line is not pinned but free to
move, there will be an additional contribution to the velocity field that comes from
the motion of the contact line [35, 36]. Hence, it is not yet known what the velocity
field inside the drop looks like, how it evolves over time and how this affects the
dynamics of the stain formation.

1.4 Guide through the thesis

In this thesis we investigate the evaporation of colloidal dispersion drops in order to
understand how evaporation and flow control the particle deposition. As a simple
model system, we use macroscopic water drops that contain spherical polystyrene
particles, and study the evaporation of these drops under atmospheric conditions.

In Chapter 2 we investigate what determines the evaporation rate of a water drop
on a superhydrophobic substrate. We show that the evaporation rate of such a drop is
indeed entirely determined by diffusive transport of the water vapour in the surround-
ing air and occurs in a universal way for all drop sizes and arbitrary contact angles.
In Chapter 3 we focus on the inside of the drop: how does the internal flow look as
the drop evaporates from a flat solid substrate? We derive analytical solutions to the
velocity field close to the contact line of the drop and show that the nature of the flow
changes in a spectacular way with the contact angle. We extend this concept to drops
evaporating from a (non-volatile) soft or liquid substrate in Chapter 4. It turns out
that the evaporation of such a drop also generates a flow pattern in the non-volatile
liquid subphase. Again, the nature of the flow near the contact line strongly depends
on the contact angles between the two liquids and the surrounding air.

Once the flow inside the evaporating drop is known, we can predict what type
of stain will be obtained when we add colloidal particles. In Chapter 5 we study
the evaporation of colloidal dispersion drops with pinned contact lines, and obtain
detailed information on the dynamics of the ring-stain formation. We show that from
the deposition dynamics, we can predict and control the pattern that forms. Pattern
formation by drops with moving contact lines is discussed in Chapter 6. We let drops
evaporate from pillared superhydrophobic substrates on which there is no pinning of
the contact line. These pillars are shaped in such a way that the drop remains in the
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fakir state on top of the pillars during evaporation. In that case the end result is not a
deposited ring stain, but an ordered, soccer-ball-like three-dimensional object.

In Chapter 7 we study the inverse of a liquid drop in air: an air bubble in liquid.
We develop a model to study the response of the liquid-air interface to a pressure
pulse, and calculate the resonance frequency and interface shape of the insonated
bubble.
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2
How water drops evaporate from a

superhydrophobic substrate ∗ †

In this chapter, the evaporation of water drops from a superhydrophobic substrate on
which the contact line is pinned is investigated. While previous studies mainly fo-
cused on drops with contact angles smaller than 90◦, here we analyse almost the full
range of possible contact angles (10◦-150◦). The greater contact angles and pinned
contact lines can be achieved by the use of superhydrophobic Carbon Nanofiber sub-
strates. The time-evolutions of the contact angle and the drop mass are examined.
The experimental data is in good quantitative agreement with the model presented by
Popov [Physical Review E 71, 036313 (2005)], demonstrating that the evaporation
process is quasi-static, diffusion-driven, and that thermal effects play no role. Fur-
thermore, we show that the experimental data for the evolution of both the contact
angle and the drop mass can be collapsed onto one respective universal curve for all
drop sizes and initial contact angles.

∗Published as: Hanneke Gelderblom, Álvaro G. Marı́n, Hrudya Nair, Arie van Houselt, Leon Lef-
ferts, Jacco H. Snoeijer, and Detlef Lohse, “How water droplets evaporate on a superhydrophobic sub-
strate”, Phys. Rev. E 83, 026306 (2011).

†The experimental work is performed by Álvaro G. Marı́n and Hrudya Nair.
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16 CHAPTER 2. HOW WATER DROPS EVAPORATE

2.1 Introduction

Evaporation of sessile drops with small contact angles (< 90◦) has been studied ex-
tensively. Several evaporation modes have been explored: the constant contact-angle
mode [1, 2], in which the contact area of the drop on the substrate vanishes; the
constant contact-area mode [1, 3–6], in which the contact angle vanishes; and the
combination of both modes [1, 7, 8]. A thorough understanding of drop evaporation
is of vital importance for examining the drying rate [1, 3, 6, 7, 9–11], the flow patterns
observed inside drying drops [12–14], and the residual deposits [5, 15, 16].

In early modelling of evaporating drops [3, 4, 7, 17], the evaporative flux was
assumed to be uniform in the radial direction, as it is for evaporation from a sphere.
However, in his study of contact-line deposits, Deegan [5] argued that the evaporative
flux from a sessile drop with a spherical-cap shape is generally not uniform, but
diverges near the edge of the drop for contact angles smaller than 90◦ (see Chapter
1). Hu and Larson [6] later used a numerical model to find an expression for the rate
of mass loss from a drop in terms of its contact angle, taking this divergence into
account. Their model applies to contact angles smaller than 90◦.

For larger contact angles, few theoretical descriptions exist for diffusion around
a spherical-cap drop. In [1], the rate of mass loss was expressed in terms of a series
solution, which can be approximated in both the small and the large contact angle
regimes. Popov [16] described an analytical solution for the rate of mass loss in
terms of the contact angle that applies to the full range of contact angles. However,
this model has never been validated against experimental data in the large contact-
angle regime.

Apart from the diffusive spreading of water vapour described by the models men-
tioned above, there are other factors that may influence the evaporation rate (see e.g.
[18] for an overview). Firstly, the evaporation models discussed assume a station-
ary contact line. When the contact line is moving, dynamic effects may complicate
the problem, for both the vapour concentration outside and the viscous flow inside
the drop [8]. Secondly, evaporative cooling of the drop can reduce the evaporation
rate [9–11] and the resulting temperature gradients on the drop surface can induce a
Marangoni flow [13, 14]. Finally, in addition to the diffusion of water vapour, free
convective transport may play a role, increasing the evaporation rate [11, 19]. How-
ever, the influence of these factors on the evaporation rate still has to be confirmed
experimentally.

In this chapter, we describe our investigation into the evaporation of water drops
from Carbon Nanofibre (CNF) substrates; see Fig. 2.1. These substrates belong to the
family of ordered carbonaceous structures: the graphitic planes are oriented under an
angle to the central axis. CNF substrates can exhibit superhydrophobicity [20]. The
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Figure 2.1: Side view (a) and top view (b) of a 8 µl drop on a CNF substrate in the
initial moments. (c) and (d): the same drop in the last moments before being com-
pletely evaporated. Note that the contact line remains perfectly circular and com-
pletely pinned until almost the end of the process.

samples used here have contact angles with water ranging from 150◦ up to 170◦. On
superhydrophobic substrates, all evaporation modes can occur; the constant contact-
angle mode is mostly observed when the contact angle hysteresis is low, the constant
contact-area mode when the hysteresis is high [21, 22]. On our CNF substrates, the
contact line remains pinned throughout nearly the entire experiment, hence evapora-
tion takes place in the constant contact-area mode. Therefore, we can study evapo-
rating drops in almost the full range of possible contact angles (0◦-150◦). The rate
of mass loss and contact-angle evolution over time are obtained experimentally for
various drop sizes. We show that the evaporation dynamics is accurately described by
the diffusion-based model of Popov [16], suggesting that thermal and free-convection
effects are unimportant in our experiment. In addition, we show that the evolutions
of the drop mass and contact angle can be described by a universal relation, that is,
independent of the drop size and initial contact angle.

In Section 2.2, the experimental set-up and preparation of the CNF substrates are
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1 m� 1 m�

Figure 2.2: SEM images of the Carbon Nanofibres (CNFs) used as superhydrophobic
substrates. Tilted side view (left) and augmented top view (right).

described. The experimental results are discussed in Section 2.3. The theoretical
model for drop evaporation adopted from Popov [16] is briefly described in Section
2.4. Finally, in Section 2.5, it is shown that the theoretical results are in good quanti-
tative agreement with the experimental data.

2.2 Experimental methods

2.2.1 Preparation of the CNF substrates

The drops were left evaporating in an empty room‡ at a constant temperature of
23◦ and a humidity of 30% over Carbon Nanofibre substrates; see Fig. 2.2. Carbon
nanofibres were grown on oxidized silicon substrates using a Ni thin film as catalyst.
A 250 nm thick SiO2 layer was grown on p-type Si(001) via wet oxidation. On top
of this oxide layer 10 nm Ta was deposited, followed by a 25 nm thick Ni layer.
The samples were pretreated prior to the CNF synthesis in a quartz reactor. The
substrates were placed on a flat quartz boat placed centrally inside a quartz reactor,
and the temperature was increased at a rate of 5◦C min−1 from room temperature
up to 500◦C in a N2 (99.999%, Indugas) atmosphere. During this pretreatment step,
the samples were subjected to 20 vol.% of H2 in N2 at a total flow rate of 50 ml
min−1 at 500 ◦C for 2 hours; then the temperature was increased up to 635◦C. At 635
◦C, 25 vol.% ethylene (99.95% Praxair) in N2 was passed through the reactor for 1
hour, while 6.25 vol.% H2 (99.999%, Indugas) was added for the first minutes of the

‡No human heat sources were present.
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reaction time. After the reaction time, the substrates were cooled down in N2 at a rate
of 10◦C min−1 until room temperature was reached. The CNF samples were used
without further functionalization.

2.2.2 Measurement of drop evaporation

To analyse the evaporation of drops on CNF substrates, the drops were observed dur-
ing their total evaporation time and photographed at 1 s time intervals. Two synchro-
nized cameras (Lumenera Lm135, 1392 x 1040 pixels) were used for this purpose,
one taking side-view images and another one taking top-view images; see Fig. 2.1.
Side-view images allowed us to compute volume (mass), contact angle, area, drop
radius, mass loss, and spreading velocity at every instant. The image analysis was
performed using a custom-made MATLAB code in which the detected drop profile
was fitted to an ellipse. The drops considered in this study are much smaller than
the capillary length (which is 2.7 mm for a water drop [18]), hence we can neglect
flattening of the drops by gravity. Nevertheless, we used an elliptical rather than a
spherical fitting. The elliptical fit allowed us to use three fitting parameters (two semi
axes and the angle of the ellipse with the horizontal plane) instead of only one (drop
radius), thereby increasing the precision of the determination of the volume and con-
tact angle of the drops. The ellipticity of the drops, defined as the ratio between both
semi axes, was always below 7%.

The contact line of the drops was detected automatically; the contact angles were
then measured by finding the tangent of the ellipse at the contact line. The error in the
determination of the contact angle, based on the quality of the fits, was found to be
below 1%. The volume of the drop was obtained by calculating the ellipse area above
the contact line and assuming rotational symmetry with respect to the vertical axis,
with an error below 10%. The rate of mass loss was computed applying a fourth-order
finite differentiation of the ellipse volume over time.

Top-view images were used to obtain qualitative information on the stability and
circular symmetry of the contact line; using this information, we rejected those few
experiments in which the contact line had a highly irregular shape.

Due to the chaotic three-dimensional distribution of the nanofibres, the way the
liquid wets the structure is more complex than for ordered superhydrophobic mi-
crostructures [23, 24], for which two wetting states can be defined: the Cassie-Baxter
state, in which the contact of the liquid with the substrate is minimum, and the Wenzel
state, in which the contact is maximum. In our case, it is assumed that the liquid re-
mains in a mixed state and that the transitions from one intermediate state to another
are sufficiently smooth to be undetectable. Therefore, we will not use this terminol-
ogy in this chapter.
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Figure 2.3: (a) Drop volume versus time for initial drop volumes of 1.6 µl (blue),
2.1 µl (red), 2.9 µl (magenta), 4.6 µl (green), 6.2 µl (cyan), and 6.9 µl (brown).
The error bars are deduced from the elliptical fit to the data. The measurements were
performed with a time resolution of 1 s, but for clarity we show the error bars with a
15 s resolution. (b) The dimensionless drop mass plotted against the dimensionless
time. The black solid line represents the theoretical prediction according to the Popov
model. The experimental data is scaled according to (2.6). The time is set to 0 at the
end of the drop life (see text).

2.3 Experimental results

The drop volume, contact angle, and radius were determined from the experimental
data with a time resolution of 1 s. The drop volume versus time plot, clearly shows
nonlinear behaviour; see Fig. 2.3(a). Hence, a model based on the small contact-
angle approximation, which predicts the drop volume to decrease linearly in time
[5, 6], will not suffice to describe the evolution of the drop volume over time. From
the drop volume measurements, the rate of mass loss of the drop dM/dt was de-
rived, as described in Section 2.2. Figure 2.4(a) shows that dM/dt decreases with
decreasing contact angle; hence it also decreases in time. Again, nonlinear behaviour
is observed, with a steep decline for larger contact angles, but this levels off to a
constant rate of mass loss for contact angles smaller than 70◦.

During the evaporation, the contact angle of the drops decreases over time from
about 150◦ to 0◦, as shown in Fig. 2.5(a). Initially, the contact angle decreases slowly
over time. This is followed by a more rapid, linear decrease over time when the
contact angle becomes smaller than approximately 70◦. The initial contact angles of
the drops differ somewhat owing to irregularities in the substrate. For comparison,
not only the experimental data, but also the predictions based on the Popov model are



2.4. THEORY OF DROP EVAPORATION 21

(b)(a)

0 50 100 1500

1

2

3

4

θ (deg)

<

<

0 50 100 1500

5

10

15

20

θ (deg)

|d
M

/d
t|

|d
M

/d
t| 

(n
g/

s)

Figure 2.4: (a) The rate of mass loss of the drop (derived from the measured drop
volume) versus the contact angle. Colours are as in Fig. 2.3. (b) The same data, but
now scaled according to (2.6). Predictions from the Popov model (black solid line)
and the model of Hu & Larson (purple solid line) are shown.

shown in Fig. 2.5(a). A detailed explanation of this model is given in Section 2.4.
One advantage of the CNF substrates is that the contact lines of the drops remain

pinned throughout almost the entire experiment. Therefore, drop evaporation in the
constant contact-area mode can be studied, in the absence of any contact-line dynam-
ics. Similar behaviour of the contact angle in the pinned situation has been reported
for natural lotus leaves [22], synthetic superhydrophobic surfaces with high contact
angle hysteresis [21], and aligned carbon nanotube (CNT) samples [25]. Figure 2.6
shows that depinning only occurs during the final moments of the drop life. In the
depinning phase, the contact angle is typically smaller than 40◦. Once the drop starts
to depin, also the measurements error shoots up, since the contact line does not depin
homogeneously, and is therefore no longer exactly circular.

2.4 Theory of drop evaporation

To describe theoretically the measured time-evolution of a drop’s contact angle and
mass, we need to know the evaporative flux from the drop surface. This flux depends
on the rate-limiting step in the vapour transport. We assume that vapour transport by
free convection, induced by the density difference between dry and humid air [19],
is negligible compared to diffusive transport. The influence of evaporative cooling of
the drop on the evaporation rate [11] is also neglected. Hence, the vapour transport
occurs mainly by diffusive spreading of the water vapour in air, and is characterized
by diffusion time td = R2/D, with R the drop radius in the plane of the substrate,
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Figure 2.5: (a) The evolution of the contact angle over time. The experimental data
(•) can be very well described by the theoretical model of Popov (—), by adjusting
the drop radius according to its experimental value (see Section 2.5). The error in the
experimental data is not shown, since it is below 1%. (b) The same data, but with the
time scaled according to (2.6), and set to 0 at the end of the drop life (see text). The
black solid line represents the theoretical prediction according to the Popov model.
Colours are as in Fig. 2.3.
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Figure 2.6: The drop radius versus time. Significant depinning of the contact line is
observed during the final 4% of the drop lifetime. Data are shown with 15 s time-
resolution. During the depinning, a resolution of 5 s is used. Colours are as in
Fig. 2.3.
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and D the diffusion coefficient. The diffusion time for water vapour in air is of the
order of 10−2 s. The evaporation occurs in a quasi-steady fashion: the timescale for
diffusion is much smaller than the typical drop evaporation time t f = ρ`/(cs−c∞) td .
Here, t f /td = ρ`/(cs− c∞) -the density of water divided by the vapour concentration
difference between the drop surface and the surroundings- is of the order of 105. We
do not take into account the Kelvin correction to the vapour pressure, since this effect
is negligible for drops of the size considered here.

To determine the diffusive outflux from the drop surface, the vapour concentration
field around the drop has to be calculated. We follow the approach taken by Popov
[16]. For completeness, we briefly formulate the problem below.

A cylindrical coordinate system (r,z,φ ) is adopted, with r being the radial coor-
dinate, z the direction normal to the substrate, and φ the circumferential coordinate.
The origin of this system is chosen such that z = 0 corresponds to the substrate, and
r = 0 to the center of the drop. In this case the problem is axisymmetric, i.e. φ -
independent. In the quasi-steady, diffusion-limited case the concentration field c(r,z)
around the drop is given by

∇
2c = 0. (2.1)

The boundary conditions imposed along the spherical-cap shaped drop with arbitrary
contact angle θ are: (i) c = cs, the saturated vapour concentration, along the drop sur-
face; (ii) c = c∞, the ambient vapour concentration, far away from the drop; and (iii)
the substrate is impermeable, hence ∂c/∂ z = 0 along the substrate. The diffusive flux
is given by JJJ = −D∇c. In our experiments, the ambient temperature was 23◦C, the
humidity H = 0.3. At this temperature, D= 24.6×10−6 m2/s, ρ` = 997.6 kg/m3, and
cs = 2.08× 10−2 kg/m3 (obtained from [26, p. 6-1, 6-191] by linear interpolation);
furthermore c∞ = Hcs.

In the limit of small contact angles, simplified solutions to (2.1) subject to the
boundary conditions (i)-(iii) can be used, as presented by Deegan [5] and Hu & Lar-
son [6]. In our case a more advanced model is needed, since we consider drops evap-
orating on a superhydrobic substrate, with initial contact angles of approximately
150◦. The analytical solution to the equivalent problem of finding the electric poten-
tial around a charged lens-shaped conductor is described in [27]. Popov [16] used
this result to determine the rate of mass loss from a drop of arbitrary contact angle:

dM
dt

=−
∫ R

0
J(r)

√
1+(∂rh)22πrdr =−πRD(cs− c∞) f (θ), (2.2)

with M the drop mass, J the diffusive outflux from the drop surface, h(r, t) the drop
height, t the time, and

f (θ) =
sinθ

1+ cosθ
+4

∫
∞

0

1+ cosh2θτ

sinh2πτ
tanh[(π−θ)τ]dτ. (2.3)
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The drop mass can be expressed in terms of θ by the geometric relation

M(θ) = ρ`πR3 cos3 θ −3cosθ +2
3sin3

θ
, (2.4)

which yields an ordinary differential equation for θ as a function of t

dθ

dt
=−D(cs− c∞)

ρ`R2 (1+ cosθ)2 f (θ). (2.5)

Numerical integration then gives θ as a function of t. Once θ is known, M(θ) and
dM/dt can be derived.

In Fig. 2.3(a)-2.5(a) we showed the evolution of the drop mass and contact angle
in time for various drop sizes. Based on the theory described above, one would expect
a universal behaviour that is independent of the drop size and the other problem
parameters cs, H, ρ`, and D. To demonstrate this, we introduce the nondimensional
mass and time as

M̂ =
M

ρ`R3 t̂ =
cs− c∞

ρ`

t
R2/D

. (2.6)

By substituting (2.6) into (2.2)-(2.5), we obtain

dM̂
dt̂

= −π f (θ), (2.7)

M̂ = π
cos3 θ −3cosθ +2

3sin3
θ

, (2.8)

dθ

dt̂
= −(1+ cosθ)2 f (θ). (2.9)

The relations (2.7)-(2.9) no longer depend on the size of the drops, but only on the
contact angle. This implies that when we rescale the experimental data according to
(2.6), they should all collapse onto the theoretical curves described by (2.7)-(2.9).

2.5 Comparison between theory and experiment

In Section 2.4 we explained that it should be possible to collapse the experimental
data for all drop sizes measured onto a single theoretical curve. In order to test this,
we have to scale the experimental data according to (2.6). As a characteristic length
scale, we would like to use the drop radius. However, during the final moments of the
drop’s lifetime, the drop radius is a time-dependent quantity. Therefore, we discarded
all data where the drop radius was changing significantly (>10%) in the results that
follow, and used the initial drop radius for scaling.
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The most direct prediction from the Popov model, which involves no time-integration,
is the dependence of the rate of mass loss on the contact angle (2.7). Indeed, the
scaled experimental data collapse onto a single curve, which is in excellent agree-
ment with the theoretical prediction (2.7), as shown in Fig. 2.4(b). For comparison,
the result obtained from applying the model of Hu and Larson [6] is also shown.
Their approximation works well up to θ = 90◦, but for larger contact angles Popov’s
fully analytical model is required to adequately describe the data.

Figure 2.5(b) shows that the experimental data for the contact angle versus (di-
mensionless) time follow a universal theoretical curve for all drop sizes measured.
The total time it takes a drop to evaporate depends on its initial contact angle, as
explained in Section 2.4. Since the initial contact angles vary somewhat, the drop
lifetimes differ. However, the experimental time is not an absolute measure, and we
therefore have the freedom to set t = 0 at whichever contact angle we want. As the
reference point, we chose t = 0 at the end of the evaporation process, which is char-
acterized by θ = 0. This point is found by linear extrapolation from the last data
points measured to θ = 0.

Once the contact angle in time is known, we can apply relation (2.8) to derive
the drop mass theoretically. Experimentally, the drop mass is obtained independently
of the contact angle. Therefore, the comparison between the theoretical predictions
and the experimental data for the drop mass, as in Fig. 2.3(b), provides a second
validation of the model.

In the results described above, we used the experimental data as long as the con-
tact line remained pinned and hence the drop radius remained constant. In Fig. 2.6,
we showed that depinning occurs during the final moments of the drop’s lifetime.
To construct the theoretical curves in Fig. 2.5(a), this radius change has been taken
into account. Time integration was performed backwards in time, starting from the
smallest contact angle measured. The agreement between the model results and the
experimental data is surprisingly good, even in the regime where the drop radius is
changing significantly. Although the drop radius decreases rapidly, the timescale over
which the radius shrinks is still large -in the order of 100 s- compared to diffusion
time (10−2 s). Therefore, contact-line dynamics is still of negligible influence, and
the quasi-steady evaporation model can indeed be applied [8, 18].

2.6 Conclusion

In this chapter, we studied the evaporation of water drops on superhydrophobic Car-
bon Nanofibre substrates. These substrates allowed us to measure the evolution of
the drop mass and contact angle over time, while the contact line remained pinned
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throughout almost the entire experiment. The initial contact angle was as high as
150◦, and since it decreases to 0◦ during evaporation, a very large range of contact
angles could be studied. Therefore, CNF substrates are a very useful tool to study
drop evaporation in the absence of contact-line dynamics. In our theoretical analysis,
we deduced universal relations for the time-evolutions of the drop mass and contact
angle. This universal scaling behaviour is confirmed by our experimental results.
Since the experimental data covered almost the entire range of possible contact an-
gles, we have been able to validate the diffusion-based analytical evaporation model
presented by Popov [16]. The agreement of our experimental data with this theoret-
ical model -that does not contain any adjustable parameters- is excellent. Therefore,
we conclude that in our experiments the evaporation is quasi-static and diffusion-
driven, and thermal effects play no role.

Even during the brief depinning phase, the quasi-steady model predicted the ex-
perimental data surprisingly well. Hence, a pinned contact line is not a stringent re-
quirement for the applicability of the quasi-steady evaporation model, provided that
the radius change takes place on a longer timescale than the diffusion. By contrast,
for drops evaporating on complete wetting substrates, a quasi-static drop profile can
no longer be assumed and viscous effects influence the evolution of the contact angle
over time [8, 28, 29]. It would be interesting to address intermediate cases, in which
there is some contact-line motion, so as to establish the range of applicability of the
quasi-steady evaporation model.
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3
Stokes flow near the contact line of an

evaporating drop ∗

In the previous chapter we have shown that the evaporation of sessile drops in quies-
cent air is governed by vapour diffusion. For contact angles below 90◦, the evapora-
tive flux from the drop tends to diverge in the vicinity of the contact line. Therefore,
the description of the flow inside an evaporating drop has remained a challenge. In
this chapter, we focus on the asymptotic behaviour near the pinned contact line, by
analytically solving the Stokes equations in a wedge geometry of arbitrary contact
angle. The flow field is described by similarity solutions, with exponents that match
the singular boundary condition due to evaporation. We demonstrate that there are
three contributions to the flow in a wedge: the evaporative flux, the downward motion
of the liquid-air interface and the eigenmode solution which fulfils the homogeneous
boundary conditions. Below a critical contact angle of 133.4◦, the evaporative flux
solution will dominate, while above this angle the eigenmode solution dominates.
We demonstrate that for small contact angles, the velocity field is very accurately
described by the lubrication approximation. For larger contact angles, the flow sep-
arates into regions where the flow is reversing towards the drop centre.

∗Published as: Hanneke Gelderblom, Oscar Bloemen, and Jacco H. Snoeijer, “Stokes flow near the
contact line of an evaporating drop”, J. Fluid Mech. 709, 69–84 (2012).
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3.1 Introduction

Evaporation of colloidal dispersion drops is a widely-used mechanism to deposit par-
ticles onto a substrate and generate colloidal crystals [1–3]. The ring-shaped stains
that remain after evaporation can also be disadvantageous, for example in the coating
and inkjet-printing industry [4–7]. To understand and control the stains that form
when a drop evaporates, one needs to know the velocity field inside the drying drop
[4, 8–10]. The capillary flow inside an evaporating drop is driven by the evaporative
mass loss from its surface. There are three mechanisms which can be rate limiting
for the evaporation of a drop [11–13]: the transfer of molecules across liquid-air in-
terface, the heat transfer to the interface, or the diffusive transport of the vapour in
air. One of the first two mechanisms can be dominant when thin films of evaporating
liquid are considered [11, 12], when the surrounding phase is not gas but pure vapour
[14, 15], or for drops on heated substrates [12, 16]. For macroscopic evaporating
drops in air, diffusion-limited evaporation is often assumed, based on estimates of
the time scales for transport [12, 17–19]. For water drops there has been some debate
about the time scale for transport across the interface, and hence about the applicabil-
ity of diffusion-limited models [12, 13]. Experimentally however, the diffusion-based
evaporation model is found to describe the evolution of the drop mass and contact an-
gle of sessile water drops with pinned contact lines very well, for the entire range of
possible contact angles [4, 12, 17, 20–22].

Here, we will study the flow near the pinned contact line of a macroscopic evap-
orating drop in air on an unheated substrate, and therefore we consider diffusion-
limited evaporation. Until now, the nature of the flow in the vicinity of the contact
line has remained unclear. In the diffusion-limited case, the singular corner geom-
etry of the drop close to the contact line gives rise to a diverging evaporative flux
(see Chapter 1), and hence to a diverging velocity field [4, 5, 18, 23]. This singularity
makes analytical and numerical solutions to the velocity field inside a drop difficult to
obtain [15, 23–27]. In several studies the flow inside the drop was solved analytically,
but at the expense of smoothing the evaporative flux singularity. Masoud & Felske
[25] considered an exponential cut-off for the flux, while Petsi & Burganos [26] fo-
cussed on uniform evaporation profiles. For small contact angles, evaporation-driven
flow inside a drop is often described in the lubrication approximation [19, 28], which
compares very well with experimental data [8], as will be shown in Chapter 5. It was
argued by Hu & Larson [23] however, that the standard lubrication approximation
does not hold near the contact line region due to the diverging evaporative flux.

On top of that, Marangoni stresses could alter the velocity field in the vicinity
of the contact line: the non-uniform evaporative flux leads to temperature gradients
over the drop surface, which give rise to differences in surface tension, and drive
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a Marangoni flow inside the drop, as has been confirmed experimentally by Hu &
Larson [29] for octane drops. Dimensional analysis shows that this Marangoni effect
is so strong that it can overcome the diverging evaporation-driven outward flow, at
least at some distance from the contact line [9, 29, 30]. However, for water drops
the Marangoni effect is found to be weak [29]. In PIV measurements of the velocity
field in an evaporating drop by Marı́n et al. [8] the experimental velocities were of
the order of 10 µm/s (see Chapter 5), whereas the Marangoni velocities would be of
the order of 10 mm/s.

In this chapter, we derive analytical solutions of evaporation-driven Stokes flow
in a wedge geometry to address the nature of flow near the pinned contact line of
an evaporating drop. While solutions to the full flow pattern in the drop can only
be obtained numerically [23, 24] or for a regularized evaporative flux [25, 26], the
behaviour in the vicinity of the contact line is characterized by similarity solutions.
This is a classical approach for flows near contact lines that goes back to Huh &
Scriven [31] and was recently applied to Marangoni flow in evaporating drops by
Ristenpart et al. [9]. We examine the velocity field inside the drop while retaining
the singular evaporative flux as a boundary condition. We demonstrate that for small
enough contact angle, the lubrication approximation can be applied all the way down
to the contact line, which invalidates the argument of Hu & Larson [29]. For larger
contact angles (above 127◦) interesting flow structures appear, with a reversal in the
flow direction. We show that there are three contributions to the total flow in the
wedge: one that comes from the evaporative flux boundary condition, one from the
downward movement of the liquid-air interface, and one eigenmode solution, which
satisfies the homogeneous boundary conditions. Which of these conditions is dom-
inant depends on the contact angle θ of the drop. For θ < θc = 133.4◦, the critical
angle the evaporative flux solution dominates, whereas for θ > θc the eigenmode
solution dominates. The solution at the critical point is treated separately. Finally,
we comment on the typical pressure in the vicinity of the contact line and on the
regularization of the evaporative singularity.

3.2 Corner solutions

3.2.1 Problem formulation

The geometry of the drop close to the contact line can be approximated by a two-
dimensional wedge with contact angle θ ; see Fig. 3.1. The contact line is located at
the origin of the polar coordinate system (ρ,φ).

We define the velocities in terms of streamfunction Ψ(ρ,φ) as
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Figure 3.1: (a) An evaporating drop on a substrate with a contact angle θ and base
radius R. The arrows indicate the evaporative flux of vapour J from the drop surface
to the surroundings. The dashed square marks the area close to the contact line,
where the drop geometry can be approximated by a wedge. (b) Overview of the
wedge geometry. The evaporative flux drives the Stokes flow inside the liquid. The
contact line is located at the origin of the polar coordinate system (ρ,φ).

uρ(ρ,φ) =−
1
ρ

∂Ψ

∂φ
, uφ (ρ,φ) =

∂Ψ

∂ρ
. (3.1)

The flow is governed by the Stokes equations, or equivalently, in terms of the stream-
function, by the biharmonic equation

∇
4
Ψ = 0. (3.2)

As boundary conditions we have no slip and impermeability of the substrate (φ = 0)
on which the drop is deposited

uρ(ρ,0) =−
1
ρ

∂Ψ

∂φ

∣∣∣∣
φ=0

= 0, and uφ (ρ,0) =
∂Ψ

∂ρ

∣∣∣∣
φ=0

= 0, (3.3)

and no stress at the liquid-air interface (φ = θ )

τρφ

∣∣
φ=θ

= η

[
ρ

∂

∂ρ

(
1
ρ

∂Ψ

∂ρ

)
− 1

ρ2
∂ 2Ψ

∂φ 2

]
= 0, (3.4)

with η the dynamic viscosity. The problem is closed by the kinematic boundary
condition at the liquid-air interface, where mass transfer due to evaporation occurs.
This kinematic boundary condition consists of two contributions. One contribution
comes from the evaporative mass flux from the interface, which drives a flow inside
the drop. Due to the evaporative mass loss, the drop volume decreases with time.
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While the contact area of the drop remains constant because the contact line is pinned,
the contact angle decreases with time. This gives rise to a second contribution to the
kinematic boundary condition: the downward motion of the liquid-air interface acts
like a closing hinge. Hence, the kinematic boundary condition reads

uφ (ρ,θ) =
∂Ψ

∂ρ

∣∣∣∣
φ=θ

=
1
ρ`

J(ρ)+
dθ

dt
ρ, (3.5)

with J the evaporative flux and ρ` the liquid density. Both contributions in (3.5) are
known in detail from earlier studies [4, 18]. The key ingredient is that the mass loss
from the drop is limited by diffusive transport of the water vapour in the air outside
the drop. By solving the vapour concentration field outside the drop, one can find
an expression for the evaporative flux J, which, close to the contact line, scales as
J ∼ ρ̃λ (θ)−1 [4], where ρ̃ = ρ/R, with R the drop base radius, and

λ (θ) =
π

2π−2θ
. (3.6)

Hence, for λ < 1, which means θ < 90◦, the evaporative flux diverges as the contact
line is approached. From the solution for the vapour concentration field in the corner
geometry, the evaporative flux is found to be [4]

J(ρ)
ρ`

= A(θ)U ρ̃
λ (θ)−1, (3.7)

where U = D∆c/Rρ` is the velocity scale, which is of order µm/s for water drops
in ambient conditions (see Chapter 5), with D the diffusion constant for vapour in
air, and ∆c = cs− c∞ the vapour concentration difference (in kg/m3) between the
drop surface and the surroundings. Prefactor A(θ) can be found from the asymptotic
behaviour of the full spherical-cap solution [18] and is of order unity. The rate of
contact angle decrease, dθ/dt, can be determined from the total rate of mass loss
from the drop. A closed-form analytical solution for the rate of contact angle decrease
was derived by Popov [18] (see Chapter 2)

dθ

dt
=−B(θ)

U
R
, (3.8)

with

B(θ) = (1+ cosθ)2
[

sinθ

1+ cosθ
+4

∫
∞

0

1+ cosh2θτ

sinh2πτ
tanh(π−θ)τdτ

]
. (3.9)
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3.2.2 Solution

For a given power n, a general solution to biharmonic equation (3.2) reads [32]

Ψ(ρ,φ) = ρ̃
n [c1 cosnφ + c2 sinnφ + c3 cos(n−2)φ + c4 sin(n−2)φ ] , (3.10)

where n 6= 0,1,2. Since (3.2) is a linear equation, the two contributions to the inho-
mogeneous boundary condition (3.5) can be considered separately, whereas the full
solution is obtained by superposition. On top of this, one may in principle add the
classical “eigenmode” solution of the homogeneous problem by Dean & Montagnon
[33] and Moffatt [34], for which all boundary conditions are zero. Hence, we need
to consider three types of solutions: the velocity field due to the evaporative flux
condition

uφ (ρ,θ) =
1
ρl

J(ρ), (3.11)

the velocity due to the moving interface condition

uφ (ρ,θ) =
dθ

dt
ρ, (3.12)

and the flow that satisfies the homogeneous condition

uφ (ρ,θ) = 0. (3.13)

From now on, we will refer to (3.11) as the flux condition, to (3.12) as the hinge
condition, while the solution satisfying (3.13) is the corner eigenmode. Note that
each of these boundary conditions will give rise to a different power of ρ̃ in the final
solution. The flux condition (3.11) scales as ρ̃λ−1, with λ given by (3.6), while the
hinge condition (3.12) scales as ρ̃ . The homogeneous eigenmode solutions turn out
to scale with yet another exponent, denoted λE . This exponent also depends on θ ,
and follows from an eigenvalue equation M(λE ,θ) = 0 [34], where

M(λ ,θ) = sin2(λ −1)θ − (λ −1)sin2θ . (3.14)

This equation has a countable infinite number of zeros, each of which corresponds
to a different eigenmode (with the exception of the trivial solutions λ = 0,1,2). The
solutions of (3.14) are discussed in great detail by Dean & Montagnon [33], Moffatt
[34] and Moffatt & Duffy [35]. For angles θ < 79.6◦ (3.14) has complex roots, which
causes viscous eddies to appear in the flow [34]. We are interested in the lowest root
that has Re(λE)> 1, to ensure regularity of the eigenmode velocity.
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Flux condition

One can cast the solutions generated by the flux condition (3.11) in the form

Ψ(ρ,φ) =
RUA(θ)
M(λ ,θ)

ρ̃
λ f (φ ,θ), (3.15)

where λ depends on θ as given in (3.6), and the φ -dependent part reads

f (φ ,θ) =
1
2
{(λ −2) [sinλθ − sin(λ −2)θ ] [cosλφ − cos(λ −2)φ ] (3.16)

+ [λ cosλθ − (λ −2)cos(λ −2)θ ]
[

sin(λ −2)φ − λ −2
λ

sinλφ

]}
.

The factor RU provides the dimensional strength of the streamfunction, while A(θ)
captures the dependence of the evaporative flux on the contact angle of the drop. In-
terestingly, the denominator contains the factor M(λ ,θ) that was previously defined
in (3.14). We thus need to consider separately the cases where M(λ ,θ) = 0, for
which the solution (3.15) is not defined.

The function M(λ ,θ) has two obvious roots that are encountered in the flux prob-
lem, namely λ = 1 and λ = 2. These correspond to cases for which the form (3.10)
is degenerate and additional solutions to the biharmonic equation appear. For λ = 1
(θ = 90◦) the flux solution becomes

Ψ(ρ,φ) =
2RUA(π/2)

π
ρ̃φ sinφ , (3.17)

while for λ = 2 (θ = 135◦) we find

Ψ(ρ,φ) =
RUA(3π/4)

2
ρ̃

2 (1− cos2φ) . (3.18)

Note that these degenerate solutions are a regular limit of (3.15) for θ → 90◦ and
θ → 135◦, respectively.

In addition to these trivial roots, M(λ ,θ) with λ = π/2(π − θ) exhibits one
root that leads to a truly nontrivial solution. This root appears at a critical angle
θc = 133.4◦, with corresponding exponent λc = 1.93. The critical point arises when
the four boundary conditions are not linearly independent, which implies that the
inhomogeneous system cannot be solved. Indeed, this is exactly the condition re-
quired for a nontrivial (eigenmode) solution of the homogeneous problem, namely
M(λE ,θ) = 0. As a consequence, the eigenmode solution has the same exponent
λE = λc at the critical angle θc. The resulting critical solution is not of the form
(3.10) and will be treated separately in Section 3.2.3.
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Hinge condition

The hinge condition (3.12) gives rise to a degeneracy of solution (3.10), since in this
case n = 2. The solution to (3.2) with the hinge condition is given by

Ψ(ρ,φ) =
RUB(θ)

N(θ)
ρ̃

2g(φ ,θ), (3.19)

with N(θ) = 2(2θ − tan2θ), and

g(φ ,θ) = sin2φ − tan2θ cos2φ −2φ + tan2θ . (3.20)

Hence, (3.19) is defined for all angles, except at θ = 0◦ and θ = θh = 128.7◦, where
N(θ) = 0. For θ satisfying N(θ) = 0, λ = 2 becomes a double root of eigenvalue
equation (3.14). Hence, once more a critical point appears when the eigenmode has
the same exponent as the solution of the inhomogeneous hinge problem, i.e. λE = 2.
We anticipate that this critical point will be of less importance than the critical point
for the flux condition, as the latter has a slightly smaller exponent λ < 2.

Eigenmode

The eigenmode represents the nontrivial solution of the homogeneous problem, ap-
pearing when M(λE ,θ) = 0. It reads [34]

Ψ(ρ,φ) = RUC(θ) ρ̃
λE h(φ ,θ), (3.21)

with

h(φ ,θ) = sin[(λE −2)(θ −φ)]− sin(λE −2)θ
sinλEθ

sin[λE(θ −φ)]. (3.22)

The prefactor C(θ) cannot be determined from the “inner” Stokes flow problem,
where we consider only the wedge in the vicinity of the contact line. This is funda-
mentally different from the prefactors A(θ), B(θ), which are known from the external
boundary conditions on the wedge. In general, the eigenmode solution will be excited
by the far-field flow inside the drop, and is therefore determined on the outer scale R.
This is beyond the present, local analysis. As the only velocity scale in the problem
is the one induced by the evaporation, the streamfunction will naturally scale as RU ,
and C(θ) will be of order unity (with the exception of the critical point). Note that
(3.21) is the classical solution by Moffatt [34], which leads to the famous viscous
eddies when λE has a nonzero imaginary part.
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3.2.3 The critical point

The vanishing denominator of (3.15) at θc = 133.4◦ and (3.19) at θh = 128.7◦ sig-
nals the breakdown of the local similarity solution. Such a breakdown of similarity
solutions in corner flows has been analysed in great detail by Moffatt & Duffy [35].
This work considered a pressure-driven flow along a duct which cross-section has a
sharp corner, as well as a variation to the hinge problem considered above. All cases
displayed the same scenario: the inhomogeneous boundary conditions cannot be ful-
filled at a critical angle θc, due to an overlap with the homogeneous eigenmode. The
key result by Moffatt & Duffy [35] is that the critical solution develops logarithmic
corrections, of the type Ψc ∼ ρ̃λc ln ρ̃ . This can be derived by considering the regular
solution, including the eigenmode contribution, in the limit θ → θc. We therefore
introduce an expansion parameter, ε = θ −θc, and derive the critical flux solution in
the limit ε→ 0. Below we discuss in detail the critical point for the flux condition, as
it will turn out to be the most relevant for the evaporation problem. The critical point
for the hinge condition can be treated analogously; the result is given below.

The identity of exponents at the critical point, λ = λE = λc, forces us to consider
a superposition of the flux solution and the eigenmode, Ψc = Ψ f +ΨE . As expected,
the flux solution diverges near the critical point as 1/ε , and gives an expansion of
(3.15)

Ψ f =
RU ρ̃λ

ε

[
A0 + εA1 +O

(
ε

2)] [ f0(φ)+ ε f1(φ)+O
(
ε

2)] . (3.23)

Here we note that λ = λc + ελ1 +O
(
ε2
)
, and all coefficients can in principle be

derived from the expressions given in this section. Here we summarize the leading-
order contributions

f0(φ)≡ f (φ ,θc), A0 =
A(θc)

M1(λc,θc)
, λ1 ≡

dλ

dθ

∣∣∣∣
θc

=
π

2(π−θc)2 , (3.24)

where f (φ ,θ) was previously defined in (3.16), and M1(λc,θc) = dM/dθ |θc . As
noted by Moffatt & Duffy [35], a regular solution for ε → 0 is only achieved if the
eigenmode displays an identical 1/ε scaling, to compensate for the divergence of
Ψ f . To leading order, we thus require C(θ)'−A0/ε , such that the expansion of the
eigenmode can be written as

ΨE =−RU ρ̃λE

ε

[
A0 + εC1 +O

(
ε

2)] [h0(φ)+ εh1(φ)+O
(
ε

2)] , (3.25)
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where now λE = λc + ελE,1 +O
(
ε2
)
. Once again, we provide the leading-order

contributions

h0(φ)≡ h(φ ,θc), λE,1 ≡
dλE

dθ

∣∣∣∣
θc

=−2(λc−1) [cos2(λc−1)θc− cos2θc]

2θc cos2(λc−1)θc− sin2θc
.

(3.26)
Indeed, one can verify that h0(φ) = f0(φ), which ensures a perfect cancellation of
the 1/ε contributions of Ψ f and ΨE . Finally, the critical solution Ψc = Ψ f +ΨE is
obtained from (3.23) and (3.25) as

Ψc = RU ρ̃
λc

×

{
A0

[
ρ̃ελ1− ρ̃ελE,1

ε

]
f0(θ)+(A1−C1) f0(θ)+A0 ( f1(φ)−h1(φ))+O (ε)

}
= RUA0ρ̃

λc {(λ1−λE,1) ln(ρ̃/κ) f0(φ)+ [ f1(φ)−h1(φ)]+O (ε)} . (3.27)

Indeed, this confirms the scenario that the leading-order asymptotics of the crit-
ical solution is of the form Ψc ∼ ρ̃λc ln(ρ̃/κ). The logarithm appears due to the
expansion of ρ̃ελ1 − ρ̃ελE,1 , and thus originates from the “closeness” of λ and λE

near the critical point. The length scale κ that appears inside the logarithm cannot
be determined from the current local analysis. Namely, κ follows from the combi-
nation (A1−C1) appearing in (3.27). The coefficient C1 requires more knowledge
of the eigenmode amplitude C(θ), and thus of the large-scale flow in the spherical-
cap shaped drop. Finally, one can verify that this critical solution indeed satisfies
the inhomogeneous boundary condition, due to the properties A0 f1 = A(θc)/λc and
f0 = h1 = 0 at the free surface φ = θc.

The hinge solution at the critical point θh = 128.7◦ can be obtained following a
similar procedure: the singular contributions from the hinge and eigenmode solutions
at this point will give rise to logarithmic corrections. Here we only state the result

Ψc,h =−
RUB(θh)

8θ 3
h

ρ̃
2
{

ln(ρ̃/κh)g0(φ)+
θh

2
[g1(φ)−h1(φ)]+O (ε)

}
, (3.28)

with g0(φ) ≡ g(φ ,θh) = sin2φ − 2φ + 2θh(1− cos2φ). Note that the leading-order
part, which contains the logarithmic corrections, is identical to the hinge problem
considered by Moffatt & Duffy [35]. Differences arise in the inhomogeneous contri-
bution, g1(φ), due to the different boundary conditions.
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3.3 Results

3.3.1 Dominant contribution

The complete flow field is obtained by a superposition of the flux, hinge and eigen-
mode solutions identified above. Which of these will be relevant near the contact
line depends on the scaling with ρ̃: the lowest exponent provides the leading-order
asymptotic contribution. Figure 3.2 shows the exponents λ (flux solution, solid line)
and λE (eigenmode, dotted line), as a function of the contact angle θ . For θ > θc

the flux solution has the higher exponent, and hence the eigenmode will provide the
leading-order contribution. For θ < θc, the flux solution dominates. The hinge so-
lution ∼ ρ̃2 (dashed line) is asymptotically subdominant for all contact angles. Note
that in the vicinity of θc = 133.4◦, however, the values of all exponents are very close
to 2. This means that in this range of contact angles the asymptotic solution can be
reached only at very small ρ̃: on practical scales all solutions will contribute.
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Figure 3.2: A plot of the exponents of ρ̃ that arise in the flux solution (solid line),
hinge solution (dashed line) and eigenmode solution (dotted line) versus θ . For θ <
133.4◦, the flux solution is dominant, whereas for larger θ the eigenmode solution
dominates. The hinge solution is always subdominant. The critical points θc = 133.4◦

and θh = 128.7◦ arise when respectively the flux or hinge solution is equal to the
eigenmode solution.

Most experiments on evaporating drops with pinned contact lines are performed
at angles below 90◦. This means that the flux solution, for which the prefactor A(θ)
is known, is by far the most relevant case. Nevertheless, an important conclusion is



40 CHAPTER 3. CORNER FLOW IN EVAPORATING DROPS

θ=150˚ θ=160˚

θ=50˚ θ=126˚ θ=128˚

θ=140˚

θ=130˚

θc≈133.4˚

Figure 3.3: Streamline plot of the flux solution (3.15) for different contact angles.
For θ = 128◦, 130◦, 150◦ and 160◦ reversal of the flow direction is observed. Based
on (3.30), a new separatrix (dashed line) appears for θ ≈ 127◦ (which disappears at
θ = θc = 133.4◦), θ ≈ 148◦ and θ ≈ 157◦. At θ = θc we only show the φ -dependent
part of the solution, since the prefactor is diverging and has to be treated separately
(see Section 3.2.3).

that a local analysis of the problem cannot provide the amplitude of the leading-order
flow for θ > θc: the prefactor C(θ) is determined from matching to the outer flow.

3.3.2 Streamlines

The solutions (3.15), (3.19) and (3.21) in principle contain all information on the
liquid flow in the vicinity of the contact line. We plot the streamlines associated to
these solutions in Figs. 3.3, 3.4 and 3.5 for different values of the contact angle.
Fig. 3.3 shows the flow due to the flux condition, with a mass transfer out of the
liquid, Fig. 3.4 represents the hinge condition due to the moving liquid-air interface,
while Fig. 3.5 shows the eigenmode solutions. For the inhomogeneous solutions,
the streamlines arrive at the liquid-air interface with a well-defined angle. As we
deal with similarity solutions, the inclination of the streamlines with respect to the
free surface is independent of ρ and depends only on θ . The only exception is the
solution at the critical point θc (3.27), where an additional length scale κ from the
outer problem comes in and the self-similarity is lost.
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θ=95˚ θ=150˚θ=50˚ θh=128.7˚

Figure 3.4: Streamline plot of the hinge solution (3.19) for different contact angles.
A separatrix (dashed line) appears for θ = 90◦, and disappears again for θ = θh ≈
128.7◦. At θ = θh we only show the φ -dependent part of the solution, since the
prefactor is diverging and has to be treated separately (see Section 3.2.3).

θ=60˚ θ=90˚ θ=150˚θ=30˚

Figure 3.5: Streamline plot of the eigenmode solution (3.21) for different contact
angles with prefactor C(θ) = 1. For θ = 30◦ and 60◦ viscous eddies are present. The
dashed line separates the two eddies visible for θ = 30◦.

When analysing the flux solution in Fig. 3.3 in more detail, one can see that for
θ < 90◦ the strength of the flow increases upon approaching the contact line. From
the scaling in (3.15) one in fact sees that the velocity diverges as ρ→ 0 for this range
of contact angles, since λ − 1 < 0. Above θ > 90◦, however, the velocity decays
and vanishes near the contact line. Interestingly, the flow displays some reversal
structure for these large contact angles. As θ increases from 126◦ to 128◦ the flow
becomes separated into two regions, such that near the bottom wall the liquid flow
direction is actually away from the contact line, towards the center of the drop. The
dashed line shows the separating flow line that ends with a stagnation point at the
contact line. The separatrix then moves upwards with increasing θ , as seen in the
plot for θ = 130◦. Between θ = 130◦ and 140◦ the separatrix disappears. This
occurs when the separatrix reaches the free surface, which coincides with the critical
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Figure 3.6: The contact angles at which a new separatrix appears for the flux condi-
tion are located at the zeros of p(θ) = sinλθ − sin(λ −2)θ , given by (3.30).

point, i.e. θ = θc = 133.4◦. At this critical angle, the surface flow changes direction.
Indeed, a separatrix located at the free surface is incompatible with the boundary
condition of an outward flux, which illustrates the breakdown of a local similarity
solution and the appearance of the critical solution (3.27). When the contact angle is
increased to 150◦ a new separatrix appears. For θ = 160◦ we see that this separatrix
has moved upwards, and a second separatrix has appeared. Separatrices that appear
for θ > 133.4◦ do not disappear again, since the flux solution (3.15) has only one
critical point. One can demonstrate from the exact solutions that a new separatrix
appears at φ = 0 when ∂uρ/∂φ

∣∣
φ=0 = 0. This leads to the condition

p(θ) = sinθ(λ −2)− sinθλ = 0, (3.29)

with λ = π/2(π − θ), which is illustrated in Fig. 3.6. From criterion (3.29) the
contact angles at which a new separatrix appears are found to be (in radians)

θ =
π

4

(√
1+6k+ k2 +1− k

)
, for k = 1,3,5 . . . . (3.30)

The hinge solutions have a simpler structure (Fig. 3.4). For all values of θ we
find that u ∼ ρ̃ , and thus the speed increases linearly with the distance from the
contact line. For contact angles below 90◦ the flow is oriented away from the contact
line. For θ > 90◦ only one single separatrix appears, which has disappeared again
for θ > 128.7◦. At the critical point θh = 128.7◦ the local similarity solution again
breaks down, and we encounter a critical solution.
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The eigenmode solutions are shown in Fig. 3.5, where we took C(θ) = 1. In
the eigenmode solution, viscous eddies will appear for angles smaller than 79.6◦

[34]; in that case the real part, Re(λE) > 3.8, so that the eigenmode is subdominant
with respect to the inhomogeneous solutions. Hence, in the evaporation problem, the
eigenmodes become important only for angles where no eddies are present.

3.3.3 Lubrication limit: θ � 1

Now we have the full analytical solution to the evaporation-driven velocity field in
a wedge available, we can check whether for sufficiently flat drops (i.e. small con-
tact angles) the lubrication approximation can be applied. Therefore, we expand the
Stokes flow solution for the flux condition for small θ , φ , yielding

uρ(ρ,φ)' 3A(θ)U
1
θ

1
(ρ/R)1−λ (θ)

[
1
2

(
φ

θ

)2

− φ

θ

]
. (3.31)

In the lubrication approximation, we can write the radial velocity in terms of the
radial distance from the drop center, r, distance to the solid substrate, z, and drop
height h, as [8, 23] (see Chapter 5)

ur(r,z) =−
3
√

2
π

U
1
θ

1√
1− (r/R)

[
1
2

( z
h

)2
− z

h

]
. (3.32)

For small enough θ , A(θ) →
√

2/π [18] and ρ̃ ' 1− r/R. Furthermore, since
z = ρ sinφ ' ρφ and h = ρ sinθ ' ρθ , z/h ' φ/θ , and (3.31) leads to the same
expression as (3.32). Hence, the Stokes solution converges to the lubrication solution
for small θ . To illustrate this, we plotted the lubrication solution together with the
Stokes solution for different contact angles; see Fig. 3.7. For convenience, we nor-
malized all velocities by the velocity at the interface. From these results it is clear that
even close to the contact line, where the evaporative flux is diverging, the lubrication
approximation can be applied.

3.4 Discussion

We have derived the analytical solution to the Stokes-flow problem in a wedge ge-
ometry with an evaporative flux boundary condition. From the Stokes-flow solution
it was found that the lubrication approximation accurately describes the velocity field
in an evaporating drop all the way down to the contact line, for small enough con-
tact angle. For larger contact angles, reversing flow structures are observed, and the
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Figure 3.7: (a) The radial velocity uρ(φ), normalized by the velocity at the free
surface uρ(θ), in the lubrication approximation (3.32) (solid black line), and the
Stokes flow solutions (3.1) (dashed lines) for θ = 20◦ (blue), θ = 30◦ (red), θ = 40◦

(green), θ = 50◦ (orange). (b) Streamline plot of the lubrication solution for θ = 50◦.
The velocity in azimuthal direction is derived from the continuity equation.

eigenmode solution of the problem becomes of importance. Hence, the direction of
the flow (towards or away from the contact line) depends on the contact angle of the
drop. The contact angles at which new separatrices in the velocity field appear are
calculated from the exact solutions. This flow reversal, the appearance of separatrices
and the dominance of the eigenmode solution for evaporation-driven flow have not
previously been reported in numerical studies [23, 24], which focussed on smaller
angles, nor in analytical studies [25, 26], where different boundary conditions were
used. It would be interesting to investigate these aspects further in numerical simu-
lations of the flow in the entire drop, in particular near the critical point, where the
exponents of all three contributions (flux, hinge and eigenmode) to the total solution
are very close.

The direction of the surface flow in the evaporating drops changes when the con-
tact angle passes through the critical angle θc. In addition, Marangoni stresses in-
duced by the non-uniform evaporative flux can change the surface flow direction. We
can re-examine the influence of the Marangoni effect by direct comparison of our
results to the solution with a Marangoni boundary condition, presented by Ristenpart
et al. [9]. In our case, hence in absence of Marangoni stresses, the radial velocity
scales as

uρ ∼
1
θ

U ρ̃
λ−1, (3.33)
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whereas the solution for the Marangoni case scales as [9]

uρ ∼ θ
2UMaρ̃

λ , (3.34)

where Ma= ρ`βR∆Hv/µk the Marangoni number, with ∆Hv the specific latent heat
of evaporation, β the dependence of surface tension on the temperature, and k the
thermal conductivity of the liquid. For water, the Marangoni number is of order 105.
The factors 1/θ and θ 2 only appear in the small contact-angle limit, otherwise, the
θ -dependent prefactors are of order unity. From (3.33) and (3.34) it is clear that
the two expressions have a different power in ρ , and therefore a cross-over length
scale exists. Below this critical length ρc, the lowest power, hence the evaporation-
driven solution (3.33), will dominate, above this length the Marangoni-driven flow is
dominant. The cross-over length scale is given by

ρc =
1

θ 3Ma
R, (3.35)

hence, this length scale is of order 10−8m for a millimetre-sized drop, as long as the
contact angle is of order 1. Only for extremely small contact angles, the length scale
over which evaporation dominates the Marangoni effect becomes comparable to the
drop size. Hence, the Marangoni effect should alter the velocity pattern in evapo-
rating drops significantly, as described by the solutions obtained by Ristenpart et al.
[9]. The question why this is not observed experimentally for water drops remains,
with as possible explanation that it has to do with surface-active contamination which
could suppress the Marangoni effect [29].

We described flow structures inside drops on partially wetting substrates, in cases
where the contact line is pinned. When the contact line is not pinned but free to
move, this will lead to an additional velocity field inside the drop, as described by
Huh & Scriven [31]. Since the Stokes flow problem is linear, the moving contact-
line solution by Huh & Scriven [31] could just be superimposed on our evaporation-
driven solution. In that case, two velocity fields that are in opposite directions will
arise in the problem: one with a mean flow directed towards the contact line (for
contact angles below 127◦), driven by the evaporative flux from the drop surface,
and one with a mean flow away from the contact line driven by the receding contact
line. Since the evaporation-driven velocity field diverges close to the contact line for
θ < 90◦, it will dominate the solution close to the contact line. A cross-over length
can be defined where both velocity fields cancel each other [28]. This length depends
on the contact angle and can be as large as 100 µm: for small contact angles the entire
flow field in the wedge close to the contact line will be dominated by evaporation.

Interestingly, the diverging evaporative flux leads not only to a diverging veloc-
ity field inside the drop, but also to a diverging pressure field, which scales as p ∼
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1/θ(ηU/R)ρ̃λ−2. For water drops, with U = 10−6m/s, η = 10−3Pa s, R = 10−3m,
this gives for very small length scales ρ̃ = 10−6 (ρ = 10−9m) that p = 103/θ Pa.
This pressure is large compared to the Laplace pressure pγ = γ/R = 102 Pa. There-
fore, we expect on small scales (ρ ∼ nm) some additional curvature of the interface.
This subtle problem has been studied in detail by Berteloot et al. [28]: for angles
∼ 0.1 a change in contact angle of about 15% was reported. For angles of order
unity, however, no significant effect of the evaporation-driven flow on the contact an-
gle was found. Note that, since p ∼ ρ̃λ−2, the pressure will diverge for all contact
angles, since the leading-order exponent λ < 2 (see Fig. 3.2). For θ < 90◦, or λ < 1,
the evaporation problem is even more singular than the moving contact-line problem
by Huh & Scriven [31], for which p ∼ ρ̃−1. Moreover, the introduction of a slip
length does not change the pressure exponent given by the evaporative-flux boundary
condition, contrary to the case of a moving contact line of a non-volatile liquid.

Finally, it is still an open question what regularizes the radially diverging velocity
inside an evaporating drop with a contact angle smaller than 90◦. In previous studies,
two approaches have been used. Either the evaporative flux singularity is smoothed
mathematically [24–27], or by the introduction of a precursor film, which regularizes
the singular wedge geometry near the contact line [19, 27, 36, 37]. However, for
drops on a hydrophobic substrate, a precursor film is not expected, and a proper
explanation for the regularization of the evaporative flux is still lacking. The large
pressure close to the contact line could reduce the vapour concentration, according
to the Kelvin equation [19] but for contact angles of order unity the pressure appears
insufficient for this effect, even at the nanometre scale. Furthermore, if the rate at
which molecules are transported by diffusion exceeds the rate at which they transfer
across the interface, the air just above the drop is no longer saturated with vapour and
the evaporative flux no longer diverges. We speculate that another option could be
that the regularization occurs on the length scale of the mean free path of the water
vapour molecules in the surrounding air, which is of the order of 100 nm, and sets a
lower bound on the validity of the diffusion problem.
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4
Stokes flow in a drop evaporating from a

liquid subphase ∗

In the previous chapter, we have studied the nature of the flow near the contact line
of a drop evaporating from a flat solid substrate. In this chapter, the evaporation of a
drop from a liquid subphase is investigated. The two liquids are immiscible, and the
contact angles between them are given by the Neumann construction. The evapora-
tion of the drop gives rise to flows in both liquids, which are coupled by the continuity
of velocity and shear-stress conditions. We derive self-similar solutions to the velocity
fields in both liquids close to the three-phase contact line, where the drop geometry
can be approximated by a wedge. We focus on the case where Marangoni stresses
are negligible, for which the flow field consists of three contributions: flow driven by
the evaporative flux from the drop surface, flow induced by the receding motion of the
contact line, and an eigenmode flow that satisfies the homogeneous boundary condi-
tions. The eigenmode flow is asymptotically subdominant for all contact angles. The
moving contact-line flow dominates when the angle between the liquid drop and the
horizontal surface of the liquid subphase is smaller than 90◦, while the evaporative-
flux driven flow dominates for larger angles. A parametric study is performed to
show how the velocity fields in the two liquids depend on the contact angles between
the liquids and their viscosity ratio.
∗Submitted to Phys. Fluids as: Hanneke Gelderblom, Howard A. Stone, and Jacco H. Snoeijer,

“Stokes flow in a drop evaporating from a liquid subphase”.

51



52 CHAPTER 4. EVAPORATION FROM A LIQUID SUBSTRATE

4.1 Introduction

The evaporation of a liquid drop from a flat solid substrate has been studied exten-
sively, for example in the context of evaporation-driven particle deposition [1–4] and
evaporative cooling [5–7]. However, apparently little is known about the evapora-
tion of liquid drops from a liquid subphase. On a liquid subphase the contact line
of the drop is not pinned, the subphase is deformable, and the evaporation can gen-
erate a flow in both liquid phases. Examples of such a system are gasoline or oil
drops on water, or water drops on mercury. Similar interface deformations occur for
drops evaporating from soft, deformable solid substrates [8–11], for which the flow
geometry is reminiscent of drops floating on another liquid subphase.

Evaporation of sufficiently small sessile drops under atmospheric conditions is
usually governed by the diffusive transport of vapour in the surrounding air [1, 12–
17]. The evaporative flux from the drop surface drives a radially outward flow inside
the drop, which is responsible for the so-called coffee-stain effect [1, 2]. In drops
where the contact line is free to move, there is an additional contribution to the flow
field that comes from the receding motion of the contact line [14, 18]. Furthermore,
the non-uniform evaporation of sessile drops leads to temperature gradients on the
liquid-air interface. The subsequent Marangoni flows can give rise to additional cir-
culation [5, 19, 20].

It has remained a challenge to characterize the flow near the contact line, due
to the small length scales involved and the evaporative singularity. In Chapter 3,
we have studied the nature of the flow near the pinned contact line of a liquid drop
evaporating from a flat solid surface by approximating the drop profile by a wedge
geometry [21]. We have shown that the Stokes flow in this wedge-shaped region can
be described by similarity solutions and consists of three contributions: flow driven
by the evaporative flux from the drop surface, flow induced by the downward motion
of the liquid-air interface, and an eigenmode flow that satisfies the homogeneous
boundary conditions and can give rise to Moffatt corner eddies [22].

In this chapter, we investigate the evaporation of a liquid drop from a liquid sub-
phase, as shown in Fig. 4.1(a). We consider drops with a size smaller than the capil-
lary length. In that case, the interface of the liquid subphase remains horizontal and
the drop attains the shape of a lens. The angles θ , α , and β between the liquids are
dictated by the three surface tensions in the system via the Neumann construction,
such that both the horizontal and vertical components of the capillary forces add to
zero [23]. We focus again on the nature of the flow near the contact line of the drop,
where the drop shape can be approximated by a wedge geometry, see Fig. 4.1(b). The
evaporation of liquid 1 will cause a flow in both liquids 1 and 2. We describe these
flows by deriving self-similar solutions to the Stokes equations in a wedge geometry,
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Figure 4.1: (a) A drop of liquid 1 evaporating from a non-volatile liquid subphase
(liquid 2). The angles θ , α , and β between the two liquids can be found from the
Neumann construction at the three-phase contact line. The dashed square marks the
area close to the contact line, where the drop shape can be approximated by a wedge.
(b) An overview of the wedge geometry containing both liquid 1 and liquid 2. The
contact line is located at the origin of the polar coordinate system (ρ , φ ). The evap-
orative flux J (indicated by the arrows) from the surface of liquid 1 drives the flow
inside liquid 1, which is coupled to the flow in liquid 2 via the continuity of velocity
and shear stress conditions.

in which the flows in both phases are coupled dynamically. Again, the flow in the
wedge consists of three contributions: the evaporative-flux driven flow, the flow due
to the receding motion of the contact line, and the eigenmode flow for the coupled
phases. The eigenmode flow in a similar double-wedge region was already investi-
gated by Anderson & Davis [24]. They found conditions under which Moffatt eddies
can be present in viscous flow of two fluids near a corner of two rigid planes. The
present work is a variation of this problem, where there are two free surfaces and one
of the liquids evaporates. A parametric study is performed to investigate how much
flow is generated in the liquid subsphase by the evaporation of the liquid drop as a
function of the angles θ , α , and β , and the viscosity ratio of the two liquids. We first
treat the three flow contributions separately, and then identify the regime in which
each contribution is asymptotically dominant.
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4.2 Problem formulation

The geometry of the drop close to the contact line can be approximated by a two-
dimensional wedge, see Fig. 4.1(b). The three contact angles between the liquids in
the wedge add to θ +α +β = 2π . To ensure both horizontal and vertical balances
between the surface tensions at the three-phase contact line, these angles are restricted
to θ ,α,β < π . We adopt a polar coordinate system (ρ,φ ) with the origin located
at the contact line and define the velocities in terms of streamfunctions Ψ1(ρ,φ) and
Ψ2(ρ,φ) as

uρ 1(ρ,φ) = − 1
ρ

∂Ψ1

∂φ
, uφ 1(ρ,φ) =

∂Ψ1

∂ρ
,

uρ 2(ρ,φ) = − 1
ρ

∂Ψ2

∂φ
, uφ 2(ρ,φ) =

∂Ψ2

∂ρ
. (4.1)

The flow is governed by the Stokes equations, or equivalently, in terms of the stream-
functions, by the biharmonic equations

∇
4
Ψ1 = 0, ∇

4
Ψ2 = 0. (4.2)

The general self-similar solutions to the biharmonic equations in the two liquids are
[25]

Ψ1(ρ,φ) = ρ
m [a1 cosmφ +a2 sinmφ +a3 cos(m−2)φ +a4 sin(m−2)φ ] , (4.3a)

Ψ2(ρ,φ) = ρ
n [c1 cosnφ + c2 sinnφ + c3 cos(n−2)φ + c4 sin(n−2)φ ] , (4.3b)

where m,n 6= 0,1,2; in that case, the form (4.3) is degenerate and additional terms
arise. The exponents m and n will be selected by the boundary conditions.

The solution to the flow field described by (4.2) consists of three contributions
[21] (see Chapter 3). One contribution comes from the evaporative mass flux from
the free surface of liquid 1, which drives a flow inside the drop. A second contribu-
tion arises from the volume change of the drop due to the evaporative mass loss. In
case the contact line of the drop is pinned, there will be a corresponding contribution
to the flow field due to the downward motion of the liquid-air interface [21]. On a
liquid subphase however, the contact line of the drop is not pinned. Instead, there is a
receding motion of the contact line, which results in a decrease in the drop radius and
gives a contribution to the flow field. The third contribution to the flow field is the
classical “eigenmode” solution to the homogeneous problem for which all boundary
conditions are zero, as described by Dean & Montagnon [26], Moffatt [22], and An-
derson & Davis [24]. From now on, we will refer to these contributions as the flux
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solution, the moving contact-line solution, and the eigenmode solution. Since (4.2)
is a linear system, we can consider each of these three contributions separately. The
full solution can be obtained by superposition.

4.2.1 Flux solution

For the evaporative-flux driven flow, we impose as boundary conditions that liquids
1 and 2 are immiscible and the geometry is fixed. At the interface between liquids 1
and 2, located at φ = 0 (or φ = 2π) this gives

uφ1(ρ,0) = 0, (4.4a)

uφ2(ρ,2π) = 0. (4.4b)

The liquid-air interfaces, located at φ = θ (liquid 1) and φ = θ +α (liquid 2), are
shear-stress free

τρφ1(ρ,θ) = 0, (4.5a)

τρφ2(ρ,θ +α) = 0. (4.5b)

The coupling between liquids 1 and 2, at the boundary φ = 0, is made by the conti-
nuity of velocity and shear stress conditions at the liquid-liquid interface,

uρ1(ρ,0) = uρ2(ρ,2π), (4.6a)

τρφ1(ρ,0) = τρφ2(ρ,2π),

or η1

[
ρ

∂

∂ρ

(
uφ1
ρ

)
+ 1

ρ

∂uρ1
∂φ

]
φ=0

= η2

[
ρ

∂

∂ρ

(
uφ2

ρ

)
+

1
ρ

∂uρ2

∂φ

]
φ=2π

, (4.6b)

with η1 and η2 the dynamic viscosities of liquids 1 and 2, respectively. As a con-
sequence, the viscosity ratio η = η1/η2 will appear as a parameter in the solution.
The conditions above are the homogeneous boundary conditions for the coupled sys-
tem of Ψ1 and Ψ2. The inhomogeneous condition comes from the evaporative flux
that drives the flow. We impose that liquid 1 evaporates, while liquid 2 is assumed
non-volatile

uφ1(ρ,θ) =
1
ρ`

J(ρ), (4.7a)

uφ2(ρ,α +θ) = 0, (4.7b)

with J the evaporative flux and ρ` the liquid density. The evaporative flux from the
drop surface is known from the solution to the diffusion equation describing the vapor
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concentration field in a corner geometry [1]

J(ρ)
ρ`

= A(α)Uρ
λ (α)−1. (4.8)

The prefactor A can be obtained from the asymptotics of the full spherical-cap so-
lution (Popov [13]), and λ (α) = π/2α . Here U = D∆c/Rρ` is the velocity scale,
which is of order µm/s for water drops under atmospheric conditions [3], with R the
radius of the drop as indicated in Fig. 4.1(a), D the diffusion constant for vapor in
air, and ∆c = cs− c∞ the vapor concentration difference (in kg/m3) between the drop
surface and the surroundings. Hence, for α > π/2 the evaporative flux diverges as
the contact line is approached, while for α < π/2 the evaporation is suppressed near
the contact line.

The eight boundary conditions for the biharmonic equations (4.2) are thus given
by (4.4-4.7). The inhomogeneous evaporative flux condition (4.7a) is driving the flow
in liquid 1, which in turn generates a flow in liquid 2 via the coupling conditions (4.6).
From condition (4.7a) we find that exponent in (4.3a) is m = λ (α). The exponent in
(4.3b) is selected by the coupling condition (4.6a), which implies n = m = λ (α). The
coefficients a1 to c4 in (4.3a) and (4.3b) can be found from the boundary conditions
(4.4)-(4.7). The system of equations that has to be solved to find these coefficients is

Cx = b, (4.9)

with
x = (a1,a2,a3,a4,c1,c2,c3,c4) , (4.10)

a vector containing the coefficients a1 to c4. The right-hand side vector b contains
only zeros except for element b7 = AU , which comes from the evaporative driving
term. The coefficient matrix C is given by

C=


1 0 1 0 0 0 0 0
0 0 0 0 C1 S1 C1 S1

λC2 λS2 (λ −2)C3 (λ −2)S3 0 0 0 0
0 0 0 0 λC4 λS4 (λ −2)C5 (λ −2)S5
0 −λ 0 −(λ −2) −λS1 λC1 −(λ −2)S1 (λ −2)C1

ηλ 0 η(λ −2) 0 −λC1 −λS1 −(λ −2)C1 −(λ −2)S1
λC2 λS2 λC3 λS3 0 0 0 0

0 0 0 0 C4 S4 C5 S5

 (4.11)

with

C1 = cos2πλ , C2 = cosλθ , C3 = cos(λ −2)θ ,

C4 = cosλ (α +θ), C5 = cos(λ −2)(α +θ),

S1 = sin2πλ , S2 = sinλθ , S3 = sin(λ −2)θ ,

S4 = sinλ (α +θ), S5 = sin(λ −2)(α +θ). (4.12)
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Figure 4.2: Schematic of the boundary conditions experienced by liquids 1 and 2
in the two limiting cases. (a) η = 0: Liquid 1 experiences a no-stress condition at
the free surface and a no-slip condition at the interface with liquid 2, whereas liquid
2 experiences two no-stress conditions. (b) η → ∞: Liquid 1 experiences two no-
stress conditions whereas liquid 2 obeys a no-stress condition at the free surface and
a no-slip condition at the interface with liquid 1.

A solution to (4.9) can be found when det(C) 6= 0. Critical points in the solution to
(4.9) appear for those values of α , θ , η where det(C) = 0. In these cases the eight
boundary conditions are no longer linearly independent and the eigenmode solution
comes into play [21], as will be discussed in Section 4.2.3.

The 8× 8 matrix given by (4.11) describes the coupled flow in the two liquids.
We anticipate that a decoupling into two 4×4 systems arises for η = 0 and for η →
∞. In these limiting cases, the flows in the two liquids are completely independent.
The boundary conditions experienced by each of the two liquids in these decoupled
cases are sketched in Fig. 4.2. For η = 0, liquid 1 effectively experiences a no-slip
condition at the interface with liquid 2, as if it were contacting a solid substrate. This
feature is due to the extremely high viscosity of the liquid subphase. For η → ∞, the
stresses in liquid 2 are so small that effectively a no-stress condition applies and the
interface is a free surface. For liquid 2 it is exactly the other way around: no-stress at
the interface with liquid 1 when η = 0 and no-slip when η → ∞.

4.2.2 Moving contact-line solution

As the drop evaporates its volume decreases and the contact line recedes. The result-
ing translation of the interface of liquid 1 gives rise to kinematic boundary conditions
at the interface between liquids 1 and 2 (located at φ = 0) and the free surface of
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liquid 1 (located at φ = θ )

uφ1(ρ,0) =
dR
dt

sin(α +θ) = uφ2(ρ,2π), (4.13a)

uφ1(ρ,θ) =
dR
dt

sinα, (4.13b)

with R(t) the radius of the drop as indicated in Fig. 4.1(a), and dR/dt the contact-line
speed. We solve the biharmonic equations describing the flows in both liquids subject
to the boundary conditions (4.13) and (4.5-4.6), (4.7b). Since (4.13a) and (4.13b) are
independent of ρ , we obtain for the exponents in (4.3) m = n = 1. For m,n = 1,
the solutions (4.3a) and (4.3b) are degenerate, and the solutions to the biharmonic
equations are of the form [22]

Ψ1(ρ,φ) = ρ [a1 cosφ +a2 sinφ +a3φ cosφ +a4φ sinφ ] , (4.14a)

Ψ2(ρ,φ) = ρ [c1 cosφ + c2 sinφ + c3φ cosφ + c4φ sinφ ] . (4.14b)

By solving for the coefficients in (4.14a) and (4.14b) using boundary conditions
(4.13) and (4.5-4.6), (4.7b), we obtain

Ψ1(ρ,φ) = Ψ2(ρ,φ) =
dR
dt

ρ sin(α +θ −φ). (4.15)

This result is simply a uniform flow away from the contact line.
To find an expression for the contact-line speed dR/dt we can again use the so-

lution to the evaporative outer problem [13]

dV
dt

=−πR
D∆c
ρ`

f (α), (4.16)

with V the drop volume. An expression for f can be obtained from the integrated
evaporative flux from a spherical cap and is given by [16] (see Chapter 2)

f (α) =
sin(π−α)

1+ cos(π−α)
+4

∫
∞

0

1+ cosh2(π−α)τ

sinh2πτ
tanh(ατ)dτ. (4.17)

In contrast to the model of Popov [13], the drop geometry on a liquid subphase con-
sists of two spherical caps instead of one. In this case, the drop volume is given
by

V (α,θ) = πR3
[
−cos3(α)+3cos(α)+2

3sin3
α

+
cos3(α +θ)−3cos(α +θ)−2

3sin3(α +θ)

]
= πR3h(α,θ). (4.18)
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Assuming that contact angles α and θ remain constant as the contact line recedes,
we obtain an equation for the rate of change of the drop radius

dR
dt

=−1
3

U
f (α)

h(α,θ)
, (4.19)

where U = D∆c/Rρ` is again the characteristic velocity, which is known for a given
drop geometry. From (4.19) we obtain a prediction for the evolution of the drop
radius in time that could be checked experimentally

R(t) =

√
2D∆c f (α)

3ρ`h(α,θ)
(t f − t), (4.20)

with t f the total evaporation time of the drop.

4.2.3 Eigenmode solution

The eigenmode solution is the nontrivial solution to the homogeneous problem [22].
The form of the solution is still given by (4.3a) and (4.3b), but the exponents m
and n are selected by the criterion det(C) = 0, with C given by (4.11). In case the
determinant of the coefficient matrix C is equal to zero, the system of equations is
degenerate and one of the equations becomes redundant. In practise, one can find
the coefficients of the eigenmode flow by setting one coefficient equal to an arbitrary
value (here taken unity) and removing one line from the coefficient matrix (4.11) to
remove the redundancy. The last column of the coefficient matrix then serves as the
right-hand side vector. This procedure implies that the strength of the eigenmode
flow cannot be determined from the “inner” Stokes flow problem close to the contact
line, but is set by the outer flow in the drop [21, 27].

For the standard case of a drop evaporating from a flat solid substrate, the condi-
tion for the (Moffatt) eigenmode solution was found to be [21] (see Chapter 3)

M(λE ,θ) = sin2(λE −1)θ − (λE −1)sin2θ = 0, (4.21)

where λE is the exponent of the eigenmode solution. To ensure regularity of the ve-
locity field at the origin, only the roots that have Re(λE)> 1 are considered. The case
λE = 2 is a trivial root and does not correspond to an eigenmode. The present case
of a drop evaporating from a liquid subphase is more general, since the substrate is a
liquid that is not flat. The limit of η=0 effectively corresponds to a liquid evaporating
from a solid substrate, and in this case det(C) reduces to

det(C) = F(α,λE)M(λE ,θ), (4.22)
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where

F(α,θ) =−8λ sin{λ [2π− (α +θ)]}sin{λ [2π− (α +θ)]+2(α +θ)} . (4.23)

When α = π − θ , F = −8λ sin2 (πλ ) and we exactly recover the case of a liquid
evaporating from a flat solid substrate [21] given by (4.21). For arbitrary η and α

the equation det(C) = 0 gives the solution to the generalized corner-flow problem
of a liquid on a liquid subphase, where, instead of a no-slip condition, a coupling
condition between the two liquids applies. Hence, the exponent of the eigenmode
solution is a function of the three problem parameters: m = n = λE(α,θ ,η). This
problem is a variation of the one studied by Anderson & Davis [24], where a two-
dimensional viscous flow of two fluids in the corner between two solid walls was
studied. Here, instead of two solid walls there are two free surfaces.

4.3 Results

4.3.1 Flux solution

The flows in the evaporating drop and the liquid subphase depend on the angles be-
tween the phases α , θ , and β , and the viscosity ratio η . To illustrate the effect of
these parameters on the velocity fields in both liquids, we show some representative
cases. To start we extend our previous work where we studied the flow inside a liq-
uid evaporating from a solid substrate [21] (Chapter 3). The current problem is more
general, but will tend to the flat solid case when η� 1, such that liquid 1 experiences
a no-slip condition at the interface with liquid 2, and α = π−θ , such that the inter-
face of liquid 2 is flat. In Fig. 4.3(a) we show that in this limit we indeed recover the
same flow patterns as described in [21], with the flow in liquid 1 being much stronger
than the flow in the more viscous liquid 2. Similarly to the results obtained in our
previous work, we observe that for larger contact angles θ (and hence smaller α) the
flow shows a sequence of reversal structures. When θ = 50◦ (α = 130◦), the flow is
separated into two regions, such that near the interface with liquid 2, the flow in liquid
1 is directed away from the contact line, towards the center of the drop. The dashed
line is the separating flow line that ends in a stagnation point at the contact line. The
smaller the angle α , the more separatrices appear. Very little flow is generated in the
liquid subphase, which is very viscous in the limit η� 1. The influence of the liquid
subphase becomes apparent when the viscosity ratio η is increased, see Fig. 4.3(b).
When the viscosity of liquid 2 becomes comparable to or smaller than the viscosity
of liquid 1, the evaporation of liquid 1 generates a flow in liquid 2 via the coupling
conditions (4.6a) and (4.6b). The change in viscosity ratio also affects the flow in
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(a)

θ=50˚ θ=128˚ θ=130˚ θ=160˚

θ=50˚ θ=128˚ θ=130˚ θ=160˚

Figure 4.3: (a) Streamline plot of the flux solutions Ψ1 (blue) and Ψ2 (red) for a
viscosity ratio η = 1/10 (liquid 2 much more viscous than liquid 1). Contact angle θ

is varied from 50◦ to 160◦, whereas α is adjusted such that the interface of liquid 2 is
flat: α = 180◦−θ . The dashed lines represent the separatrices between the different
flow regimes. (b) Same as in (a) but with a viscosity ratio η = 10, which means that
liquid 1 is much more viscous than liquid 2.

liquid 1, which now experiences a different boundary condition at the liquid-liquid
interface. This results in a disappearance of the separatrices in liquid 1 for θ = 50◦,
128◦, and 130◦.

Note that the cases shown in Fig. 4.3 are somewhat artificial, since a liquid sub-
phase would not remain flat: the Neumann condition at the contact line will require
that α +θ > 180◦, to ensure a vertical force balance. To explore a physically more
realistic case, we now consider the situation where all surface tensions are equal,
for which θ = α = β = 120◦. In Fig. 4.4 we plot the resulting streamline patterns
for three viscosity ratios η . It can be observed that the velocity field in liquid 1
nearly obeys a no-slip condition for η = 1/10, which means that there is almost no
evaporation-driven flow in liquid 2. When the viscosity ratio increases, the evapora-
tion of liquid 1 generates more flow in liquid 2, which can be seen from the larger
arrow size in Fig. 4.4 for η = 10 compared to η = 1/10. For η = 10, the flow in
liquid 1 follows an almost free-slip condition. The strength of the flow generated in
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η=1 η=10η=1/10

Figure 4.4: Streamline plot of the flux solutions Ψ1 (blue) and Ψ2 (red) for θ = α =
β = 120◦, which means all surface tensions are equal. The viscosity ratio is varied
from η = 1/10 (liquid 1 experiences almost no slip at the interface with liquid 2) to
η = 10 (almost free slip).

α=60˚

θ=165˚

α=60˚

θ=175˚

α=20˚

θ=165˚

α=20˚

θ=175˚

Figure 4.5: Streamline plot of the flux solutions Ψ1 (blue) and Ψ2 (red) for α = 60◦

and α = 20◦, where θ is varied from 165◦ to 175◦, for η = 10. For small α , a
sequence of wedge-like flow structures is observed in both phases.

the liquid subphase as a function of the viscosity ratio will be analysed further below.

In Fig. 4.4 we do not see the reversing flow structures we observed in Fig. 4.3.
The reason for this feature is that the sequences of wedge-like flow structures shown
in Fig. 4.3 are triggered by large exponents λ . We can understand this behaviour by
inspecting the self-similar expressions for the streamfunctions given by (4.3): since
m = n = λ , a high frequency in the φ -direction arises when λ � 1. Hence, when
α � 90◦, which means λ � 1, multiple wedges appear. To illustrate this behaviour
we show the flow structures for large and small α in Fig. 4.5. For α = 60◦, only one
separatrix is present in the flow in liquid 1. When α is decreased to 20◦ however, we
obtain a sequence of four wedges, which implies that the flow is frequently changing
directions.

We have seen that the evaporation of liquid 1 generates a flow in liquid 2 through
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Figure 4.6: (a) Plot of the flow generated at the free surface of liquid 2 compared to
the driving by the evaporative flux, u2/u1, as a function of the viscosity ratio. The
inset shows the definition of u1 ≡ uφ 1(φ = θ), the velocity towards the free surface
of liquid 1, and u2 ≡ uρ 2(φ = α + θ), the velocity along the free surface of liquid
2. Here, α = 120◦, whereas θ is varied from 100◦ (black, solid line) to 120◦ (gray,
dashed line) to 140◦ (light gray, dotted line). (b) Same velocity ratio as in (a) but now
as a function of θ . Parameter η is fixed to 1, whereas α is varied from 100◦ (black,
solid line), to 120◦ (gray, dashed line) to 140◦ (light gray, dotted line).

boundary conditions (4.6a) and (4.6b). The strength of the flow generated in liquid 2
depends on the viscosity ratio, as shown in Fig. 4.3 and 4.4. A measure for the amount
of flow generated in liquid 2 by the evaporation of liquid 1 is the ratio uρ 2(φ =
α+θ)/uφ 1(φ = θ). This ratio relates the amount of flow generated at the free surface
of liquid 2 to the driving term, which is the flow towards the free surface of liquid
1, see the inset in Fig. 4.6(a). Fig. 4.6 shows how this velocity ratio depends on the
parameters η , θ , and α . In Fig. 4.6(a) we observe that when η = 0, the flow in liquid
1 obeys a no-slip condition at the interface between the two liquids, which means
no flow is generated in liquid 2. In the opposite limit η → ∞ a free-slip condition
applies, with a maximum amount of flow generated in liquid 2. The flow strength
in liquid 2 depends on the viscosity ratio between the two liquids, and also on the
contact angles θ and α . In Fig. 4.6(b) it is shown that not only the magnitude but
also the flow direction depends on θ and α: u2/u1 can change sign. This sign change
is due to the appearance of separatrices in the velocity field, as observed in Fig. 4.5.

4.3.2 Moving contact-line solution

The moving contact-line solution is just a uniform flow away from the contact line,
as given by (4.15). The corresponding flow pattern is shown in Fig. 4.7. No gradients
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α=150˚

θ=40˚

α=120˚

θ=120˚

α=20˚

θ=175˚

Figure 4.7: Streamline plot of the moving contact-line solutions Ψ1 (blue) and Ψ2
(red) for various α , θ , and a viscosity ratio η = 1.

in the velocity fields in the two liquids are observed, which means there is no viscous
stress. By contrast, the hinge contribution to the velocity field in a pinned evaporating
drop on a solid substrate leads to a significant viscous stress, due to the pinning of
the contact line and the no-slip condition at the liquid-solid interface [21]. As the
exponents of the streamfunctions for the moving contact-line solution are constant,
the flow patterns shown in Fig. 4.7 are the same for all angles α and θ and viscosity
ratios η . While the exponent of the moving contact-line solution is equal to unity, the
exponent λ for the flux solution is larger than unity when α < π/2. Therefore, we
anticipate that the moving contact-line solution will be the dominant motion near the
contact line when α < π/2.

4.3.3 Eigenmode solution

The streamline patterns of the eigenmode solution are shown in Fig. 4.8. In the plots,
we took η = 1, such that the eigenmodes in liquids 1 and 2 are coupled via the
boundary conditions (4.6a) and (4.6b). We observe that the velocity field in liquid
1 is directed inwards along the interface with liquid 2, and outwards along the free
surface. The same flow structure applies to liquid 2, however, for α = 20◦ a reversal
in the flow direction in liquid 2 is observed. In that case, the liquid-liquid interface
acts as a separatrix. For the parameters values used in the plots in Fig. 4.8 the expo-
nents of the eigenmode solutions are real-valued, which means no viscous eddies are
present [22].

The exponents λE of the eigenmode solution follow from the solution to det(C)=0
and show multiple branches as a function of θ , α , and η . Asymptotically, the lowest
branch that has Re(λE) > 1 (to ensure regularity of the velocity field at the origin)
dominates. The trivial roots λE = 1 and λE = 2 have to be excluded, as they do not
represent an eigenmode, but are special cases for which the form (4.3) is degenerate.



4.3. RESULTS 65

α=140˚

θ=80˚

α=100˚

θ=110˚

α=60˚

θ=140˚

α=20˚

θ=170˚

Figure 4.8: Streamline plot of the eigenmode solutions Ψ1 (blue) and Ψ2 (red) for
decreasing α and increasing θ , for a viscosity ratio η = 1.

To understand the structure of the eigenvalues, it is insightful to first describe the
limiting cases η = 0 and η → ∞ when the eigenmode flows in liquids 1 and 2 are
completely decoupled. In these two limiting cases, the leading-order exponents for
the flows in both liquids are depicted as a function of θ in Fig. 4.9(a) and (b) , for
a given α = 90◦. The leading-order exponent of the eigenmode flow in liquid 1 is
shown as a black solid line and in liquid 2 as a gray solid line. In the decoupled case,
the exponents for the eigenmode flows in liquids 1 and 2 are different. The expres-
sions for the exponents are still relatively simple, see for example (4.21), compared
to the case where the flows in liquids 1 and 2 are coupled.

Introducing a weak coupling between the two liquids (dashed lines in Fig. 4.9(a)
and (b)) ensures that the flows in both liquids obey the same exponent. This behaviour
means that the two separate branches represented by the solid lines in Fig. 4.9(a) and
(b) give rise to two coupled eigenmodes. At the intersection point where the two
separate branches (the solid lines) merge, a double root arises. Consequently, when
the flow in the two liquids is coupled, there is a root-splitting behaviour of the two
coupled eigenmodes at this intersection point. A similar behaviour was observed
by Anderson & Davis [24] for a flow of two liquids between two rigid walls. The
dominant eigenmode is the one that is closest to the lowest root of the two uncoupled
solutions. This leading-order solution is shown as a dashed line in Fig. 4.9.

To show how the viscosity ratio η influences the exponent of the eigenmode
flow in the coupled case, we plot the exponent of the eigenmode flow as a function
of θ for different values of η , for a given α = 90◦ in Fig. 4.9(c). The black solid
line represents the leading-order exponent of the coupled eigenmode flow for η =
1/100, which is the same case as depicted in Fig. 4.9(c) as the black dashed line. The
opposite case, η = 100, is shown as a black dashed line in both Fig. 4.9(b) and (c).
We observe that as the viscosity ratio η is increased for η = 1/100 to η = 100, the
maximum in the exponent becomes a minimum and vice versa.
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Figure 4.9: (a) Leading-order exponent λE of the eigenmode solution for liquid 1
(black, solid line) and 2 (gray, solid line) as a function of θ for η = 0, which means
the flow in the two liquids is completely decoupled. The inset shows the boundary
conditions experienced by liquid 1 and liquid 2 in this case. The black dashed line
represents the weakly coupled case where the flow in both liquids obeys the same
exponent, for η = 1/100. (b) Leading-order exponent of the eigenmode solutions
for the decoupled case where η = ∞. The black dashed line is the weakly coupled
case for η = 100. (c) Leading-order exponent of the coupled eigenmode solution for
η = 1/100 (black, solid line), η = 1/10 (gray, solid line), η = 1 (light gray, dotted
line), η = 10 (gray, dashed line), and η = 100 (black, dashed line). For all graphs
α = 90◦.
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Figure 4.10: Plot of the exponents of the flux (solid line), moving contact line (dashed
line), and eigenmode (dotted line) solutions as a function of α . For α < 90◦ the mov-
ing contact-line solution, for which m = 1, dominates, for α > 90◦ the flux solution
with m = λ = π/2α (in radians) is dominant. The leading-order exponent of the
eigenmode solution, here plotted for θ = 120◦ and η = 1, is always subdominant
(m = λE > 1).

4.3.4 Dominant contribution

The total evaporation-driven flow in the wedge geometry consists of three contri-
butions: the flux, the moving contact line, and the eigenmode solutions. Each of
the three contributions to the total flow in the wedge has a different scaling be-
haviour with distance to the contact line: all are of the type ρm, but with different
m. In Fig. 4.10 these exponents are plotted as a function of angle α . The moving
contact-line solution has exponent m = 1, which is the smallest of the three expo-
nents for α < 90◦. Therefore, the moving contact-line solution dominates the flow
near the contact line for α < 90◦. The exponent for the flux solution (in radians) is
m = λ = π/2α . Hence, for α > 90◦, λ < 1 and the flux solution is dominant. The
leading-order exponent of the eigenmode solution varies not only with α , but also
with θ and η . Figure 4.10 shows the result for θ = 120◦ and η = 1. However, for all
θ , α , η the eigenmode solution is always subdominant, since m = λE > 1.

4.4 Discussion

We have derived self-similar solutions to the velocity field near the contact line of a
liquid drop that evaporates from a liquid subphase. The nature of the flow strongly
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depends on the contact angles given by the Neumann construction. In both phases
reversing flow structures can be observed, in particular when the angle α < 90◦. We
found that there are three contributions to the flow in the wedge geometry: one con-
tribution that is driven by the evaporative flux from the drop surface, one contribution
from the receding contact line, and one eigenmode contribution. The amplitudes of
the flux and moving contact-line solution are known from the full spherical-cap so-
lution for the vapour transport [13]. However, the amplitude of the eigenmode flow
can only be obtained by solving the velocity field in the entire drop, which has to be
done numerically. Which of the three flow contributions is asymptotically dominant
close to the contact line depends on the contact angle α: for α < 90◦ we found that
the moving contact-line solution dominates, whereas for α > 90◦, the flux solution is
dominant. The eigenmode solution is always subdominant, in contrast to the drop on
a solid substrate, for which the eigenmode solution is the dominant flow for contact
angles larger than 133.4◦ (see Chapter 3).

A fourth contribution to the flow could come from the Marangoni effect: the non-
uniform evaporation of the drop leads to temperature gradients on the drop surface,
which induces Marangoni stresses [5]. These Marangoni stresses can give rise to
additional flow circulation in the drop, and also alter the velocity field in the liquid
subphase. In principle, our analysis could be extended to include the Marangoni-
driven contribution to the flow in the two liquids following the method of Ristenpart
et al. [5].

It would be interesting to see if the reversing flow structures found in the present
analysis can be measured in an experiment. A direct consequence of our analysis of
the moving contact-line solution is the exact expression (including the prefactor) for
the time evolution of the drop radius in time (4.20), which could easily be verified.
To our knowledge, the evaporation time of a drop on a liquid subphase has not been
investigated experimentally so far.

We have applied the solutions to the flow in a wedge geometry that contains two
liquid phases to the situation of a volatile drop evaporating from a non-volatile liquid
subphase. The same solutions also hold for the inverse problem of a non-volatile drop
on a volatile subphase, such as oil drops on water. In that case, however, the outer
problem for the evaporation is different, since we have a volatile liquid bath instead
of a volatile drop. Evaporation will lead to a decrease in the bath level, leaving the
drop geometry unchanged. Hence, the prefactor in the expression for the evaporative
flux (4.8) will be different. Since there is no contact-line motion in this case, also the
eigenmode flow can become important.
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5
Order-to-disorder transition in ring-shaped

colloidal stains ∗ †

In Chapter 3, the fluid flow inside an evaporating drop with a pinned contact line
was described. In this chapter, we show that if such an evaporating drop contains
colloidal particles, remarkable drying patterns can be formed. A colloidal disper-
sion drop evaporating from a surface, such as a drying coffee drop, leaves a dis-
tinct ring-shaped stain. This phenomenon was explained by the pioneering work of
Deegan et al. [1]. Our experiments with monodisperse colloidal particles reveal a
structural transition in the stain, from ordered crystals to disordered packings. This
sharp transition originates from a temporal singularity of the flow velocity inside the
evaporating drop at the end of its life. When the deposition speed is low, particles
have time to arrange by Brownian motion, while at the end, high-speed particles are
jammed into a disordered phase.

∗Published as:
Álvaro G. Marı́n, Hanneke Gelderblom, Detlef Lohse, and Jacco H. Snoeijer, “Order-to-disorder tran-
sition in ring-shaped colloidal stains”, Phys. Rev. Lett. 107, 085502 (2011).

†The experimental work is performed by Álvaro G. Marı́n.
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5.1 Introduction

Ordered arrays of colloidal particles present important characteristics for fields as
photonics [2] and biotechnology [3]. A relatively simple approach to deposit parti-
cles onto a substrate is by evaporation of a colloidal dispersion drop. In drops with
pinned contact lines, evaporation gives rise to the so-called coffee-stain effect [1, 4–
8]: a ring-like stain remains on the substrate once the liquid has evaporated. The
mechanism behind this ring-stain formation is explained in the pioneering work of
Deegan et al. [1]: in an evaporating drop with an immobile contact line, a capillary
flow is generated to replenish the liquid that has evaporated from the edges, as dis-
cussed in Chapter 1. This flow drags particles towards the contact line, forming the
ring-shaped stain in particle suspensions such as coffee.

This deposition mechanism has been successfully used to generate colloidal crys-
tals in three dimensions [9]. Furthermore, techniques have been developed to control
the patterns by permitting evaporation through specially designed masks [10] or by
controlling the wettability [8, 11]. Also large-scale colloidal crystals have been ob-
served for particle sizes below 100 nm [12], but some displayed instabilities that
gave rise to concentric rings [13], stripes, chevrons [14], and cracks [15]. At present,
there is no way of predicting beforehand the structure of the deposit remaining after
evaporation, due to a lack of understanding of the basic mechanisms. However, the
processes driving colloidal crystallization are crucial for controlling the mechanical
and the optical properties of the synthesized materials.

In this chapter, we reveal the conditions leading to colloidal crystallization in a
paradigmatic system: a 3-µL sessile water drop containing colloidal particles evapo-
rating from a smooth glass slide (Fig. 5.1(a)). The colloids consist of almost monodis-
perse red-fluorescent polystyrene particles with particle diameters in the range of 0.5
to 2 µm. The drop is gently deposited onto a glass, and is left to evaporate under
controlled temperature and humidity. The contact line remains pinned during the en-
tire experiment. Our aim is to analyse structure of the particle arrangement in the
remaining coffee stain.

5.2 Analysis of the colloidal stain

It turns out that the dynamics of particle deposition is crucial for the understanding of
the final structure. Therefore, the entire evaporative process is filmed simultaneously
from the side and from below (see Appendix A.1). This allows to follow the evolution
of the drop geometry, the formation of the deposit, and the dynamics of particle
migration. The particles are filmed from below with a CMOS camera (PCO imaging)
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Figure 5.1: Order-to-disorder transition in the particle stain left by an evaporating
drop. (a) A 3-µL sessile water drop evaporates from a glass substrate. (b) Ring-
shaped stain of red particles (the coffee stain) left on the substrate after evaporation.
(c) A close-up by an optical microscope of the bottom layer of the stain, taken from
the white square in (b), shows that the outermost lines of the stain (left) have an
ordered, crystalline structure. Towards the center of the drop (right), a transition to a
disordered particle arrangement is observed. (d) A top view of the ring stain, taken
from the red square in (c) with the Scanning Electron Microscope (SEM), shows that
the first lines of particles (left) are arranged in a hexagonal array, while the following
lines (brighter in the image) are arranged as square, followed by again hexagonal
array.
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connected to an inverted microscope. An integrated standard halogen light source
is used to illuminate the particles; the emitted light is filtered before it reaches the
camera. The camera is operated at a typical frame rate of 1 frame per second, which
is sufficient to capture the movement of the particles. To determine the velocity
field in the measurement area from the captured images, a custom-made MATLAB
micro-Particle Image Velocimetry (µPIV) code was used. The side-view images
are used to calculate contact angle, volume, radius, and height of the drop at every
instant with a custom-made MATLAB code. Side-view images are taken with a long
distance microscope and a CCD camera (Lumenera Corp.), synchronized with the
visualization of the particles by a common trigger.

When the drop has completely evaporated, most of the colloidal particles have
aggregated into a ring-shaped coffee stain (Fig. 5.1(b)). Zooming in on the stain,
we see that the particle arrangement is not homogeneous (Fig. 5.1(c)): there is a
remarkable transition from a crystalline arrangement to a disordered phase. A top
view of the stain (Fig. 5.1(d)) shows a sequence of particle arrangements within
the ordered phase, starting from hexagonal packing, followed by square packing,
and again hexagonal packing. The particle arrangement is analyzed in more detail
in Fig. 5.2. Close to the contact line, we find a square arrangement of particles
(Fig. 5.2(b1)), followed by a hexagonal array (Fig. 5.2(b2)), and finally a disordered
phase (Fig. 5.2(b3)). The same trend has been observed for different particle sizes
and concentrations. A well-known method to quantitatively assess the different pack-
ing structures, is to calculate the Voronoi areas [16] of the particles, as shown in
Fig. 5.2(b). In Fig. 5.2(c), we identify the Voronoi areas corresponding to the dif-
ferent cell arrangements: the disordered phase exhibits a larger average cell area as
well as a wider dispersion, compared to the ordered phase. This reveals the sharp
transition from order to disorder.

5.3 Rush hour in the drying drop

The order-to-disorder transition can be traced back to the hydrodynamics within the
drop. Fig. 5.3(a) shows the radial velocity measured by µPIV of the layer of particles
closest to the glass slide, in a region close to the contact line. The particle velocity
increases dramatically in the last moments of the drop’s life. We refer to this sudden
change in speed as “rush hour”. The particles that arrive early, at a low deposition
speed, form an ordered (square or hexagonal) structure. By contrast, particles that
arrive during rush hour have a high speed and form a jammed, disordered phase.

The rush-hour behavior can be explained by simple mass-balance considerations.
The volume flow towards the contact line inside the drop is driven by the evaporation
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Figure 5.2: Analysis of the particle ordering in the stain. (a) Overview of the different
patterns observed in the ring stain. The position of the contact line is on the left side
of the figure (the first layers of particles are not shown). (b1-3) A close-up reveals the
sequence of patterns in the stain: square packing close to the contact line (b1), fol-
lowed by hexagonal packing (b2), and finally disordered packing (b3). The Voronoi
cells belonging to the particles are shown in blue. (c) The area of the Voronoi cells
plotted versus the distance x from the contact line. The order-to-disorder transition
at x = xc is determined by the increase in the mean Voronoi area and the dispersion,
due to the lack of order. This transition is indicated by the red dotted line.
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from the drop surface [1]. It turns out that the rate of evaporation is approximately
constant over time [6]. To replenish this evaporated liquid, a continuous volume flow
towards the contact line is generated inside the drop. However, the drop height is
vanishing during evaporation. This can be characterized by a contact angle θ(t)→ 0
at the final stages of evaporation (see Fig. 5.3). Hence, the same amount of liquid
has to be squeezed through an area which is vanishing, inducing a diverging radial
velocity. Close to the contact line, the dependence of the height-averaged radial
velocity ū on time t and distance from the drop center r, is given by [4, 6]

ū(r, t) =
D∗

θ(t)
1√

R(R− r)
; (5.1)

see the Appendix A.2 for details. Here, D∗= 2
√

2Dva∆c/(πρ`) represents the driving
of the flow, with Dva = 24× 10−6 m2/s the diffusion constant for vapor in air, ∆c =
1.2×10−2 kg/m3 the vapor concentration difference between the drop surface and the
surroundings, ρ` = 998 kg/m3 the liquid density, and R the drop radius. The spatial
(R− r)−1/2-divergence originates from the diverging evaporative flux from the drop
surface [1], as discussed in Chapter 1. Although this spatial divergence generated a
lot of interest [1, 4–8], it is clear from (5.1) that there is also a temporal divergence
because θ(t) vanishes. This temporal divergence provides the key to the rush-hour
behavior: the radial velocity blows up towards the end of the drop’s life.

The experimental velocity measurements are performed at a distance of 2 µm
above the glass slide, and therefore differ from the theoretical height-averaged veloc-
ity. To quantitatively compare the model with the experimental data, a description of
the velocity profile is required. Given the low velocities measured inside the evapo-
rating drop (low Reynolds number) the inertial terms in the Navier-Stokes equation
can be neglected. Since the drop height is much smaller than its radius, the thin-film
(lubrication) approximation [17] can be used to describe the velocity field. As dis-
cussed in Chapter 3, the lubrication approximation gives an accurate description of
the velocity field inside an evaporating drop of small contact angle all the way down
to the contact line. In the lubrication approximation, the velocity u(r,z, t) is given by
(see Appendix A.2)

u(r,z, t) =
3

h2(r, t)
ū(r, t)

(
h(r, t)z− 1

2
z2
)
, (5.2)

with h(r, t) = θ(t)
(
R2− r2

)
/(2R), the local drop height. As shown in Fig. 5.3, this

model quantitatively describes the rush-hour behaviour. For the plot of (5.2) we took
R− r = 174 µm (the distance from the contact line where the µ-PIV measurements
are performed), z = 2 µm and t f the drop’s life time determined from the experiment.
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Figure 5.3: Origin of the order-to-disorder transition. Plot of the radial particle ve-
locity versus time, measured at a distance of 174 µm from the contact line. The fluid
velocity predicted by the model (5.1) is plotted as a solid line. Both model and ex-
periment show the dramatic velocity increase at the end of the drop’s life (the rush
hour). The inset shows the direction of the radial velocity in the drop. The time tc
at which the order-to-disorder transition occurs is determined from the videos; the
corresponding critical velocity uc is read from this graph (indicated by the black line
in the figure).

This means there are no adjustable parameters in the comparison between the model
and the experiments.

5.4 Order-to-disorder transition

We show that the structural change in the stain can be entirely attributed to the rush-
hour behaviour. The particles that form the ordered phase arrive at the contact line at
an early time, when the deposition rate is still low. On the other hand, the particles
that belong to the disordered phase arrive during rush hour, at a high deposition rate.
The slow, early arriving particles have time to arrange themselves within the stain by
Brownian motion, while those coming in rush hour have no time to find an appropri-
ate spot and are quenched into a disordered phase. We can quantify this transition by
comparing the time scale on which particles arrange by diffusion to the time scale of
particle deposition. The diffusive time scale is td = d2

p/D, where D is the diffusivity
of the particles in liquid, calculated by the Einstein relation. The hydrodynamic time
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scale is th = L/u (where L is the typical distance between the particles, dependent on
their concentration in the solution np(t) as L = n−1/3

p , and u is the particle velocity).
When td and th become of the same order, a transition is expected. We therefore
define the critical transition velocity as

uc ∼ LD/d2
p. (5.3)

We validated this criterion experimentally for various particle concentrations and
sizes. First, we determined the time tc when the ring-shaped stain undergoes the tran-
sition (the position where this occurs is xc, as indicated by the red line in Fig. 5.2(c)).
Next, we used the velocity-time plots (Fig. 5.3) to find the experimental value of
u(tc) = uc. As demonstrated in Fig. 5.4, the experimental critical velocity perfectly
follows the proposed scaling. The agreement suggests that the prefactor in (5.3) is
actually of order unity. Our model also explains many results described in the liter-
ature [12–15], where large-scale crystalline deposits were observed for particle sizes
ranging from 6 to almost 50 nm, in hindsight. In this range of particle sizes, the
critical velocity required for a disordered phase (5.3) is unreachable within the drop,
which explains the absence of a disordered phase.

Figure 5.4: The experimentally determined critical velocity uc, versus its theoretical
prediction (5.3).

Apart from the order-to-disorder transition, there are also transitions within the
ordered phase, from square to hexagonal packing and vice versa (Fig. 5.1(d)). In an
unconfined system, the most efficient packing lattice is the Hexagonal Close Packing
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(HCP), as conjectured by Kepler [18]. However, in the evaporating drop the particles
are confined in a wedge formed by the glass slide on one side, and the liquid-air
interface with contact angle θ on the other side. It was shown by Pieranski et al.
[19, 20] that such a confinement indeed leads to a sequence of hexagonal and square
packing structures, dependent on the most efficient packing for the available space.
Indeed, when a new layer is formed, the confinement by the wedge favours the square
packing; see Fig 1. Away from the step edge, the available space increases and allows
for the denser, hexagonal packing structure. We observe a sequence of this type of
transitions, each time a new layer is added. Similar transitions were also observed by
Abkarian et al. [21] in a wedge formed by a moving contact line.

5.5 Conclusion

In this chapter we revealed the mechanism triggering crystallization in an evaporating
colloidal solution drop with a pinned contact line. The temporal divergence (rush
hour) observed in the velocity field inside the drop is responsible for the lack of
order in the ring-shaped stains: when the deposition rate is low, particles have time
to arrange by Brownian motion and form an ordered phase. During the rush hour,
there is no time for such re-arrangement and the particles form a disordered phase.
Such effect resembles the popular computer game Tetris, where at the beginning of
the game slowly falling objects are easily arranged in regular structures, while as the
game evolves, the fast falling objects become jammed and disordered. Therefore, the
key to generate large-scale colloidal crystals is to avoid the rush-hour behaviour, i.e.
to avoid small contact angles during evaporation. This can be achieved for example
by modifying the hydrophobicity of the substrate or by continuously replenishing the
evaporated liquid. Large-scale crystalline arrays can also be obtained by tuning the
particle size, since nanometre-sized particles diffuse much more efficiently. As a rule
of thumb, freely-evaporating colloidal solutions with particles within the nanometric
range will naturally crystallize, micrometer-sized particles will show both ordered
and disordered phases, while larger particles lead to disordered stains.

Appendix

In this appendix we describe the technical details of the experimental methods and
the hydrodynamic model used in this chapter.
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A.1 Experimental materials and methods

The colloids consist of monodisperse fluorescent polystyrene particles (1% polydis-
persity, Thermo Scientific); various particle diameters have been tested ranging from
0.5 to 2µm. The colloidal solutions were prepared with triply deionized water at con-
centrations ranging from 0.01% to 0.5% w/w. No further study has been performed
for solutions of different ionic strengths. A drop of this colloidal solution is gently
deposited onto an untreated glass slide and left to evaporate in an empty room (no
human heat sources present) with controlled temperature and humidity.

The whole evaporative process is filmed simultaneously from the side and from
below (see Fig. 5.5). The particles are filmed from below with an CMOS camera
(PCO imaging) connected to an inverted microscope at different magnifications, de-
pending on the particle size, ranging from ×40 for the largest, up to ×100 for the
smallest particles. The size of the field of view (FOV) was typically 300×200µm2.
The horizontal position of the FOV was close to the drop’s contact line (about 100µm
away from it) and its vertical position about one particle diameter above the glass
slide. An integrated standard halogen light source is used to illuminate the particles;
the emitted light is filtered before it reaches the camera. The camera is operated at a
typical frame rate of 1 frame per second, which is enough to capture the movement
of the particles, because the maximum velocities observed in the system were al-
ways below 100µm/s. A custom-made MATLAB micro-Particle Image Velocimetry
(µPIV) code was used to determine the velocity field in the measurement area from
the captured images.

The side view images are used to calculate contact angle, volume, radius, and
height of the drop at every instant. Side-view images are taken with a long distance
microscope and a CCD camera (Lumenera Corp.) synchronized with the visualiza-
tion of the particles by a common trigger. The side-view images are analysed with a
custom-made MATLAB code, in which the detected drop profile was fit to an ellipse.
The elliptical fit allowed us to use three parameters to fit the drop contour (major axis,
minor axis and angle of the ellipse with the horizontal plane), leading to a higher ac-
curacy compared to a spherical fit. The contact angle is obtained by calculating the
tangent of the ellipse at the drop’s contact line; the method yields errors in contact
angle below 5%.

A video explaining the entire process and the outcome of the rush hour can be
downloaded from the winning entry of the Gallery of Fluid Motion 2010 [22].



5.5. CONCLUSION 83

Figure 5.5: Sketch of the experimental set-up for the simultaneous side and bottom
view of the evaporation process. Two synchronized cameras are used for obtaining
the particle velocity and the drop’s contact angle and other geometrical properties at
every instant.

A.2 Hydrodynamic model

In this section, we show how the expression for the radial velocity inside an evapo-
rating drop, (5.1), is derived from mass balance. Furthermore, we comment on the
velocity profile used for the plot in Fig. 5.3.

A.2.1 Mass conservation

The volume flow inside the drop is driven by the evaporation from the drop sur-
face. We consider an axisymmetric drop with a pinned contact line, described in a
cylindrical coordinate system (r,z) ; see Fig. 5.6. Inside this drop, we define an in-
finitesimally small control volume of width dr, located at a distance r from the drop
center. Mass conservation requires that the rate of change of the amount of liquid
inside this control volume equals the net inflow of liquid into the control volume,
minus the amount of liquid that has evaporated from the drop surface. As explained
in Chapter 1, this can be expressed as [4]

∂h
∂ t

=−1
r

∂

∂ r
Q− 1

ρ`
J, (5.4)
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Figure 5.6: Schematic representation of an axisymmetric drop that is evaporating,
described in a cylindrical coordinate system (r,z). The evaporative flux J from the
drop surface drives a flow Q inside the drop with height h. The dotted lines indicate
the control volume of width dr.

where h(r, t) is the local drop height, t the time, Q(r, t) the volume flow, ρ` = 998
kg/m3 the liquid density, and J(r, t) the evaporative flux. Our goal is to establish an
expression for Q, from which we can deduce the velocity towards the contact line.
From (5.4) we already see that if the local change in drop height is smaller than the
evaporative volume flux, a flow towards the contact line is generated.

To find an expression for h, we consider the limit of large surface tension, such
that the drop shape is not affected by the flow inside the drop, or by gravity. In this
case, the drop has a spherical-cap shape. The contact angle of our water drops on
glass is small: initially it is about 60◦, while during the rush hour it is vanishing.
Therefore, the drop with radius R is well described by a parabola with contact angle
θ

h(r, t) =
R2− r2

2R
θ(t). (5.5)

Hence, to find ∂h/∂ t, we need an expression for dθ/dt. Following [4–6], we assume
the vapor concentration field around the drop is quasi-steady and the evaporation is
diffusion dominated. The evaporative flux J is then obtained from the solution of the
diffusion equation for vapor in air. In the limit of small contact angles (θ � 90◦) this
evaporative flux is constant in time, and given by

J(r) =
2
π

Dva∆c√
R2− r2

, (5.6)

with Dva = 24×10−6 m2/s the diffusion constant for vapor in air, and ∆c= 1.2×10−2

kg/m3 the vapor concentration difference between the drop surface and the surround-
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ings in the experiment. To obtain an expression for dθ/dt we use global mass con-
servation: the change in drop volume Vd

dVd

dt
=

d
dt

∫ R

0
h(r, t)2πrdr =

πR3

4
dθ

dt
, (5.7)

should be equal to the total amount of evaporated liquid

dVd

dt
=− 1

ρ`

∫ R

0
J(r)2πrdr =−4RDva∆c

ρ`
. (5.8)

From (5.7), (5.8) it follows that

dθ

dt
=−16Dva∆c

πR2ρ`
, (5.9)

which is constant over time. Hence,

θ(t) =
16Dva∆c
πR2ρ`

(t f − t), (5.10)

with t f the total life time of the drop. Inserting (5.5), (5.9), and (5.6) into (5.4), we
obtain by integration

Q(r) =
2Dva∆c

πρ`

[√
R2− r2− 1

R3

(
R2− r2)2

]
. (5.11)

As can be observed from (5.11), the flow is constant over time. The height-averaged
radial velocity ū can be derived from the flow:

ū(r, t) =
Q
rh

=
4RDva∆c

πρ`r
1

θ(t)

[
1√

R2− r2
− 1

R3

(
R2− r2)] . (5.12)

Close to the contact line (r→ R), (5.12) reduces to

ū(r, t) =
2
√

2Dva∆c
πρ`

√
R

1
θ(t)

1√
R− r

. (5.13)

In Fig. 5.7 we show the comparison of (5.13) (dark grey solid line) with our exper-
imental data (black dots). The height-averaged model captures the temporal diver-
gence of the velocity field, but there is no quantitative agreement with the experi-
mental data. This is because the experimental velocity is measured close to the wall,
where the actual velocity is much lower than the height-averaged velocity.
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Figure 5.7: A plot of the radial velocity versus time, at a distance of 174 µm from the
contact line. The experimentally determined velocity field, measured at a distance of
2 (±0.5) µm above the glass slide, is shown as black dots, the height-averaged model
(5.13) is the dark grey solid line, and the model including the velocity profile (5.17)
is the light grey solid line. By taking into account the velocity profile as given by
(5.17), we can quantitatively describe the experimental data without any adjustable
parameters.

A.2.2 Velocity profile

The experimental velocity data depicted in Fig. 5.7 are measured at a distance of 2
µm above the glass slide, and therefore differs from the theoretical height-averaged
velocity. To quantitatively compare the model with the experimental data, a descrip-
tion of the velocity profile is required. Given the low velocities measured inside
the evaporating drop (low Reynolds number) the inertial terms in the Navier-Stokes
equation can be neglected. Since the drop height is much smaller than its radius, the
thin-film (lubrication) approximation [17] can be used to describe the velocity field,
and Navier-Stokes reduces to

d p
dr

= µ
∂ 2u
∂ z2 , (5.14)

with p the pressure, µ the dynamic viscosity, and u the radial velocity. According to
(5.14), the velocity profile is given by

u(r,z) =
1
µ

d p
dr

(
1
2

z2−h(r, t)z
)
, (5.15)
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where we used the boundary conditions u(r,0) = 0 (no slip) and ∂u
∂ z

∣∣∣
z=h(r,t)

= 0 (no

shear stress on the liquid-air interface). Taking the height average of (5.15), we obtain

ū(r, t) =− 1
3µ

d p
dr

h2(r, t), (5.16)

hence

u(r,z, t) =
3

h2(r, t)
ū(r, t)

(
h(r, t)z− 1

2
z2
)
, (5.17)

with h given by (5.5), ū by (5.12), and θ by (5.10). Fig. 5.7 shows that when the
velocity profile (5.17) is taken into account, we can quantitatively describe the exper-
imental data (light grey solid line). For the plot of (5.17) we took R− r = 174 µm,
z = 2 µm and t f the drop’s life time determined from the experiment. This means
there are no adjustable parameters left.
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6
Building microscopic soccer balls with

evaporating colloidal fakir drops ∗ †

In the previous chapter we have shown that the evaporation of colloidal dispersion
drops with a pinned contact line can lead to the formation of ordered two-dimensional
structures. Evaporation-driven particle self-assembly can also be used to generate
three-dimensional microstructures. In this chapter, we present a new method to cre-
ate these colloidal microstructures, in which we can control the amount of particles
and their packing fraction. To this end, we let colloidal dispersion drops evaporate
from a special type of superhydrophobic microstructured surface, on which the drop
remains in Cassie-Baxter state during the entire evaporative process. The remainders
of the drop consist of a massive spherical cluster of the microspheres, with diame-
ters ranging from a few tens up to several hundreds of microns. We present scaling
arguments to show how the final particle packing fraction of these balls depends on
the dynamics of the drop evaporation, particle size, and number of particles in the
system.

∗Published as:
Álvaro G. Marı́n, Hanneke Gelderblom, Arturo Susarrey-Arce, Arie van Houselt, Leon Lefferts, Han
Gardeniers, Detlef Lohse, and Jacco H. Snoeijer, “Building microscopic soccer balls with evaporating
colloidal fakir drops”, Proc. Natl. Acad. Sci. U.S.A. 109 (41), 16455–16458 (2012).

†The experimental work is performed by Álvaro G. Marı́n and Arturo Susarrey-Arce.
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6.1 Introduction

Evaporation-driven particle self-assembly is an ideal mechanism for constructing
micro- and nanostructures at scales where direct manipulation is impossible. For
example, in colloidal dispersion drops with pinned contact lines, as discussed in the
previous chapter, evaporation gives rise to the so-called coffee-stain effect [1]: a cap-
illary flow drags the particles towards the contact line to form a ring-shaped stain.
Such a flow not only aggregates the particles, but is also able to organize them in
crystalline phases [2–5]. Similar mechanisms such as the “convective assembly”
[6, 7] are currently successfully used to produce two-dimensional colloidal crystal
films. To obtain three-dimensional clusters of micro-particles, colloidal dispersion
drops can be dryed suspended in emulsions [8–10], in spray dryers [11, 12] or kept in
Leidenfrost levitation [13]. The main drawback of these three-dimensional assembly
techniques, however, is the lack of control on both the amount of particles and the
particle arrangement in the remaining structures.

In this work, we devise a unique, controlled way of generating on-demand self-
assembled spherical micro-structures via drop evaporation on a superhydrophobic
surface (see Fig. 6.1). We present scaling arguments to predict the particle arrange-
ment in the microstructures formed, based on the dynamics of the evaporation pro-
cess.

6.2 Colloidal supraballs

To generate the microstructures, we evaporate colloidal dispersion drops from a spe-
cial type of superhydrophobic substrates. In most of the cases, a liquid Cassie-Baxter
state drop evaporating from a superhydrophobic surface will eventually suffer a wet-
ting transition into a Wenzel state, i.e. it will get impaled into the structure and loose
its spherical shape [14, 15]. Here, however, we use a surface that combines overhang-
ing pillared structures [16, 17] with a hierarchical nano-structure (Fig. 6.3(c)). These
surface properties impose a huge energy barrier for the wetting transition to occur,
and therefore the drop will remain almost floating over the structure in a Cassie-
Baxter state during its entire life [18].

A typical result can be observed in Fig. 6.1: a water drop containing 1 µm soluble
polystyrene particles (initial concentration 0.08% weight and initial volume 5 µl)
evaporates on the superhydrophobic surface at room temperature and 30% humidity.
After a typical evaporation time of 45 minutes, the solvent is completely evaporated
and only the colloids are left upon the substrate. Remarkably, the particles (∼ 107 in
this particular case) are not just lying scattered on the pillars but they have aggregated
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Figure 6.1: (a) A drop of colloidal solution is left to evaporate on a superhydrophobic
surface. As the solvent evaporates, the particle concentration increases. Once all the
solvent has completely evaporated the colloidal particles have aggregated to form a
spherical particle conglomerate: a colloidal supraball. (b) Top view of the resultant
compact colloidal supraball left on the superhydrophobic surface after evaporation.
The micropillars forming the structure are seen as circular objects around the supra-
ball.

and form a spherical macro-cluster resting on top of the micro-pillars, which we call
colloidal supraball. The final ball has a slightly oblate shape, with an ellipticity of
approximately 10%. The final macroscopic contact angle with the structure is slightly
(about 15%) lower than the initial one. Since the particles are fully wetted and do not
have the tendency to accumulate at the interface, spontaneous shell formation [10]
is not expected. Indeed, we do not observe shell formation during the evaporation
of the drops [11, 13, 19]: the supraballs we obtain are solid, and present a high
mechanical resistance and stability. In order to inspect inside the ball, we cut some
of them open with the aid of sharp blades or micro-capillaries. All the examined
balls showed compact nuclei and no hollow structures (see Fig. 6.2). Additionally,
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Figure 6.2: A perforated supraball: one of the most compact balls was perforated us-
ing a microcapillary with a tip of 20 µm. The observation confirms that the supraballs
have a relatively high compacity even close to its core.

when looking closer at the surface of these particular colloidal supraballs as shown
in Fig. 6.3(d), one can identify crystalline flat patches which resemble the pentagonal
patches present in a soccer ball. These crystalline patches are even observed close
to the contact line (see Fig. 6.3(b)), and at the bottom of the ball, where its shape is
slightly flattened due to the contact with the pillars.

The system strongly differs from the particle deposition in the coffee-stain prob-
lem [1, 5], where pinning of the drop’s contact line causes a capillary-driven flow
that brings the particles to the boundary. Pauchard and Couder [20] studied the dry-
ing of highly-concentrated colloidal solutions of large drops on hydrophobic surfaces,
which is more similar to our system. However, in their case the contact line is also
pinned, and as a consequence the drop does not keep its spherical shape but shows
strong deformations.

6.3 Drop evaporation

To understand the final structure of the supraballs, it will turn out crucial to under-
stand the dynamics of the drop evaporation. The fact that we do not observe shell
formation, suggests that the particles do not influence the drop evaporation. To test
this hypothesis, we compare the evaporation dynamics to that of a liquid drop that
does not contain any particles. The evaporative mass loss from such a drop is typi-
cally governed by the diffusion of vapour molecules in the surrounding air [1, 21, 22].
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Figure 6.3: (a) Tilted view of the supraball in contact with the microstructure. (b)
Detail of the contact area. (c) Magnified view of the micropillars forming the mi-
crostructure. (d) Close-up of the supraball surface. The distribution of crystalline
patches resemble the pentagons in a soccer ball.
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For diffusion-limited evaporation, the rate of volume change of the drop is given by
(see Chapter 1)

dV
dt
∼ D′R, (6.1)

where R is the drop radius, and D′ = Dva∆c/ρ`, with Dva the diffusion constant for
vapour in air, ∆c the vapour concentration difference between drop surface and the
surroundings and ρ` the liquid density [5]. One might have expected the evaporation
rate from the drop surface to be proportional to the drop surface area∼ R2. However,
the vapour concentration gradient is proportional to 1/R, and therefore the total evap-
oration rate is proportional to R [23]. If the drop evaporates with a constant contact
angle, we find that, since V ∼ R3,

R(t)∼ [D′(t f − t)]1/2. (6.2)

Here t f is the total drop lifetime in case no particles are present, for which the drop ra-
dius reaches zero. In the present case the drop radius saturates at a finite radius, Rball ,
at a time t̂ = t f −R2

ball/D′, corresponding to the moment where the particles become
densely packed. In Fig. 6.4 we plot the colloidal drop radius versus t f − t. The drop
radius is measured using a spherical/elliptical fitting from side-view images of the
shrinking drop during the experiment. Our experimental data for different number of
particles are in very good agreement with the 1/2-power law. This result confirms
that the particles do not influence the evaporation process, until the final radius Rball
is reached. Hence, we see no indication that the particles form an impermeable shell
during the evaporation of the drop. In previous studies, Sen et al. [11, 19] concluded
that a shell would only form for fast evaporation or in extremely dilute cases. The
absence of a shell also agrees with other well-known colloidal drop evaporation ex-
periments in which particles do not tend to adsorb at the interface [1, 5], unless the
colloids are specifically modified for that purpose [10, 24].

The scaling (6.1) implies that the speed with which the interface is moving in-
wards, is given by dR/dt ∼ D′/R. Hence, the interface speed increases dramatically
as the drop shrinks and the maximum speed reached in the experiment will be deter-
mined by the final radius Rball . As we will show further on, this increase in interface
speed determines the particle packing inside the supraballs.

6.4 Packing fraction of the supraballs

The final size of the ball depends on the number of particles inside the drop. This can
be tuned by manipulating either the initial particle concentration or the drop size. In
our experiment, the ball size was in the range 100 < Rball/Rp < 1000, with Rp the
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Figure 6.4: The radius of the drop plotted against t f −t with t f the lifetime of the drop
and t the actual time. The triangle indicates the 1/2-power law, the dots represent the
data sets for 7 different experiments, where the number of particles was varied. For
a certain t̂ < t f the final ball size Rball is reached. The final time was extrapolated as
t f = t̂ +R2

ball/D′.

particle radius. Clearly, the exact final size of the ball will not only depend on the
amount of particles in the system but also on their packing fraction. We define the
global packing fraction as

Φ≡ N
(

Rp

Rball

)3

, (6.3)

where N is the total number of particles in the drop. The final supraball radius Rball
is accurately determined from Scanning Electron Microscope (SEM) images. If the
packing fractions were identical for all supraballs, one would expect that Rball/Rp ∼
N1/3. In Fig. 6.5(a) however, we show that there is some deviation from the 1/3-
scaling, especially for balls with a smaller number of particles †. In Fig. 6.5(b) we
show that the packing fraction indeed strongly depends on the number of particles in
the system.

As the number of particles increases, the packing fraction approaches that of
a perfect Hexagonal Close Packing configuration, in which case one would find
Φ = 0.74 [25], hence, we have an ordered particle packing inside the balls. On the
other hand, the supraballs with a smaller amount of particles show remarkably low
packing fractions, even below the Random Close Packing (RCP) limit (Φ = 0.64)

†All quantitative results shown in this chapter have been performed with colloids of 1µm diameter
(non-surface-modified fluorescent microspheres supplied by Thermo Scientific), but the same qualita-
tive behavior has been observed for 0.2 and 2µm. The colloidal solutions were always prepared with
deionized water. According to the manufacturers, the particles have a melting point of ∼ 200◦C.
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Figure 6.5: (a) Supraball to microparticle diameter Rball/Rp plotted against the total
amount of particles N in the system. (b) The packing fraction Φ strongly depends on
N. The dots represent experimental measurements and the solid line corresponds the
most efficient particle packing Φ = 0.74 (hexagonal close packed), the dashed line
marks Φ = 0.64, random close packed. Nc is the critical number of particles, above
which we find an ordered ball structure.

[26], corresponding to a disordered particle arrangement. The balls which show
packing fractions below the RCP limit contain several empty cavities. Remarkably,
the final configuration reached, seems to depend on the number of particles in the
system. In Fig. 6.5(b) we indicated the critical number of particles Nc ≈ 3 ·106 when
the packing fraction reaches that of a RCP. For N <Nc we get a loose, disordered par-
ticle packing in the supraball, whereas for N > Nc we get a densely packed, ordered
supraball.

6.5 Order-to-disorder transition

What causes the transition from ordered to disordered packings, and what determines
the critical number of particles? In order to answer these questions, we follow a
similar approach as in the previous chapter: we compare the time scale on which
particles can arrange by diffusion to the hydrodynamic time scale for the particle
transport by convection, given by the inward motion of the liquid-air interface. If
the diffusion time is small compared to the hydrodynamic time, particles can arrange
into an ordered packing. The diffusive time scale for particles to find the best position
in a crystalline phase is given by td = R2

p/D, with Rp the particle radius and D the
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diffusivity of the particles in the liquid [3, 5, 27]. The hydrodynamic time-scale is
th = L/

∣∣dR
dt

∣∣. Here R(t) is the drop radius, and L is the typical inter-particle distance,
which depends on the particle concentration as L = N−1/3R, as long as the solution
is dilute (L� Rp). We define the ratio of both time scales as:

A (t)≡ td
th

=

∣∣∣∣dR(t)
dt

∣∣∣∣ td
L
=

D′

D
N1/3

(
Rp

R(t)

)2

, (6.4)

where in the last step we used (6.1) to replace dR/dt ∼D′/R. Note that our definition
of the interparticle distance L is a global average of the whole system. Locally, some
inhomogeneities will be present, in particular close to the interface, but our scaling
analysis should not be affected.

From (6.4) we observe that A (t) increases as the drop radius becomes smaller
during the evaporation (see Fig. 6.4), until the limit R=Rball is reached. A cross-over
between the time-scales is reached when the hydrodynamic time becomes equal to
the diffusion time, hence when A = 1. If the cross-over is reached when R� Rball ,
the amount of crystalline clusters is still very small. From this point in time onwards
the interface speed is too high for the particles to further arrange in a crystalline way
[5]. Instead, they are pushed together in a random arrangement, with a low packing
fraction. If the cross-over is reached when R ≤ Rball , the particle packing is already
dense and ordered, and we find a high packing fraction. For all drops the evaporative
mass loss, and hence the decrease in radius, is the same (see Fig. 6.4), hence, the
moment when the particle packing becomes sufficiently dense for particles to arrange
depends solely on the number of particles in the drop. If N is high (N > Nc), this
moment is reached relatively early, i.e. well before A = 1, and we get an ordered
particle packing inside the supraballs. Using that Rball/Rp ∼ N1/3 and considering
A = 1, we find from (6.4) the critical number of particles above which we obtain
ordered supraballs

Nc ∼
(

D′

D

)3

. (6.5)

This result emphasizes that the transition is governed by two diffusion processes: the
diffusion of vapour, determining the speed of evaporation, versus the diffusion of
particles inside the drop. The ratio of diffusion constants selects the critical number
of particles. In our experiment D′ = 3× 10−10 m2/s and D = 2× 10−13 m2/s, from
which we find that Nc ∼ 109. This prediction is two to three orders of magnitudes
larger than the experimentally observed Nc. There are two reasons why this estima-
tion is quantitatively off: first of all, we have neglected all prefactors, and the result
is strongly (to the third power) dependent on the experimental parameters included
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in D′, i.e. humidity, liquid density, diffusivity of vapour, and saturated vapour con-
centration. Secondly, in the analysis we have not taken into account which packing
fraction is actually achieved when A = 1.

To verify whether the final packing fraction indeed depends on the spacing be-
tween the particles the moment the cross-over time is reached, we go back to our
experimental data. We define the time-dependent packing fraction as N(Rp/R(t))3.
As the drop evaporates, this packing fraction will increase until it reaches its final
value Φ. At the cross-over, defined by A = 1, the drops will have a packing frac-
tion Φ∗. If this Φ∗ is low, the amount of crystalline clusters is still very small. On
the other hand, if Φ∗ is high, we expect crystalline clusters to have formed already.
After the cross-over time, the interface moves too fast to allow for further ordering,
and it just presses the ordered particle clusters closer together. In Fig. 6.6 we show
that drops with a high Φ∗ have a high Φ: when Φ∗ ' 0.1 we obtain a final packing
fraction above the RCP limit.

Figure 6.6: Final packing fraction Φ f versus the packing fraction at the cross-over
time Φ∗. Drops below a certain Φ∗ have a too low packing fraction at the cross-over
time to achieve final packing fractions above the RCP limit. The particle packing can
not only be obtained from the value of the packing fraction, but it can also directly
be observed from the SEM images of the surface of the supraballs.
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We cannot predict the critical Φ∗ theoretically. However, we can, retrospectively,
use the experimental critical Φ∗ to compute Nc. Using that Rball/Rp ∼ 0.1N1/3 at
the cross-over, we obtain Nc ∼ 107, which is in the same order of magnitude as our
experimental results; see Fig. 6.5(b).

The particle packing in the supraballs can not only be assessed by measuring the
packing fraction, but it can also directly be seen in SEM images from the surface
of the colloidal supraballs, as shown in Fig. 6.6. The size of the soccer-ball-like
crystalline patches on the surface of the ordered supraballs depends on the ball size:
bigger balls will show larger patches due to the reduced curvature at their surfaces.
To explain the size of the crystalline domains, we hypothesize that a crystalline patch
will bend radially no more than a particle size. Then, it follows by simple trigonom-
etry that the size of a patch S will be related to the ball radius Rball and the particle
size Rp via: S/Rball = arccos(1−Rp/Rball). This expression predicts a typical patch
size of ∼ 7µm for a ball with Rball = 50µm and Rp = 0.5µm, which is in the right
order of magnitude as one can observe in Fig. 6.3(d).

6.6 Conclusion

In this chapter we described a simple technique to create spherical colloidal supra-
balls relying only on drop evaporation from a robust superhydrophobic surface. The
supraballs show a highly ordered structure if the number of particles inside the drop
is large enough to trigger early particle clustering. The critical number of particles
required to obtain an ordered particle packing inside the balls depends on the para-
meters driving the drop evaporation (through D′) and the diffusivity of the particles.
Hence, by controlling the humidity and ambient temperature the supraball packing
fraction and hence size can be controlled. Massive fabrication of micro-compact-
supraballs could easily be achieved by simply spraying a colloidal solution over the
micro-structure in a controlled atmosphere. By tuning the wetting properties of the
particles one could also be able to generate the well-known colloidosomes [10] using
the same proposed technique.
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7
Oscillations of a gas pocket on a

liquid-covered solid surface ∗

The dynamic response of a gas bubble entrapped in a cavity on the surface of a sub-
merged solid subject to an acoustic field is investigated in the linear approximation.
We derive semi-analytical expressions for the resonance frequency, damping and in-
terface shape of the bubble. For the liquid phase, we consider two limit cases: po-
tential flow and unsteady Stokes flow. The oscillation frequency and interface shape
are found to depend on two dimensionless parameters: the ratio of the gas stiffness
to the surface tension stiffness, and the Ohnesorge number, representing the relative
importance of viscous forces. We perform a parametric study and show, among oth-
ers, that an increase in the gas pressure or a decrease in the surface tension leads to
an increase in the resonance frequency until an asymptotic value is reached.

7.1 Introduction

The volume pulsations of a gas pocket entrapped on a liquid-covered solid surface
constitute a fundamental problem at the root of several applications in biology, mi-
crofluidics, cavitation and others. For example, the oscillatory flow induced by the

∗Published as: Hanneke Gelderblom, Aaldert G. Zijlstra, Leen van Wijngaarden, and Andrea Pros-
peretti, “Oscillations of a gas pocket on a liquid-covered solid surface”, Phys. Fluids 24, 122101 (2012).
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pulsations causes a liquid motion which can be used to study the behaviour of bacte-
ria and cells under the action of shear [see e.g. 1–3]. In these conditions sonoporation
of cell walls may occur, which would facilitate the uptake of drugs [see e.g. 4] and
gene transfection [see e.g. 5]. The flow induced by the oscillating gas pocket also in-
duces mixing and streaming [see e.g. 6]. Under large-amplitude acoustic excitation,
small gas bubbles issue from the gas entrapped in the cavities which greatly enhance
sonochemical reactions in a more controlled way than is possible in a conventional
sonoreactor [7]. Microfabricated cavities on a silicon surface have been used to study
controlled cavitation and bubble growth and collapse [8, 9].

Despite this wide range of applications, little is known about the dynamic re-
sponse of a gas pocket on a submerged solid in an acoustic field. Miller [10] and
Neppiras et al. [11] recorded the acoustic response of multiple bubbles entrapped in
a membrane. However, their size was not controlled, and no information about the
response of the individual bubbles could be obtained. Rathgen et al. [12] studied
the dynamics of periodic arrays of gas-filled micropores of controlled size on a solid
surface. Using optical diffraction techniques, they were able to resolve in time, with
a high accuracy, the nanometre-scale oscillations of the gas-liquid menisci driven by
a sound field. However, they were unable to resolve the shape of the menisci in the
course of the oscillations.

Theoretical studies mainly focused on spherical bubbles in the bulk liquid [13]
whereas for crevice bubbles only approximate results exist. Miller & Nyborg [14]
derived approximate expressions for the lowest resonance frequency and damping of
a gas-filled pore on a solid surface under the assumption that the interface shape is
parabolic. Their result is that the lowest resonance frequency f0 of a cylindrical pore
with radius a and depth h is approximately given by

f0 =
1

2πa

√
15πκλ p0a+120πσ

32ρ`a
, (7.1)

with κ the polytropic index, λ = a/h the aspect ratio of the pore, p0 the gas pressure
when the interface is flat, σ the surface tension coefficient, and ρ` the liquid density.
As an example, upon taking λ = 1, this relation predicts natural frequencies of 176,
17.6, and 1.76 kHz for gas pockets of air in water with equivalent spherical radii
of 10, 100, and 1000 µm. To obtain (7.1), an energy argument was used. Rathgen
et al. [12] improved somewhat on this estimate by formulating the correct hydrody-
namic problem for the liquid phase. However, they only solved the problem in an
approximate way, retaining the parabolic approximation for the free-surface shape
and also considering only the lowest resonance frequency.

The purpose of the present work is to study the dynamics of the liquid-gas in-
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terface bounding the gas contained in a cavity at the surface of a solid in the linear
approximation. We calculate the frequency, damping and surface shape of the lin-
ear normal modes of oscillation of the system in the inviscid and viscous cases. In
many situations the resonance frequency of the system is mainly determined by the
inertia of the liquid, and hence can be calculated with sufficient accuracy from a po-
tential flow model. We estimate the damping in two ways: from the potential flow
solution by using a dissipation function method and, more accurately, by solving the
time-dependent Stokes equations. The dynamics of the liquid-gas interface is found
to depend on two dimensionless parameters: the ratio of the gas stiffness to the sur-
face tension stiffness, and the Ohnesorge number, representing the viscous damping
during one period of oscillation.

7.2 Problem formulation

Our aim is to describe the resonance frequency and interface shape of a gas bubble
entrapped in a crevice. We model the crevice as a cavity with a circular mouth at
the surface of an infinite solid submerged in an incompressible liquid (Fig. 7.1). The
cavity has an aspect ratio

λ = πa3/V0, (7.2)

with a the mouth radius and V0 the cavity volume when the interface is flat. For a
cylindrical cavity, λ = a/h with h the depth of the cavity, but the results that follow
hold for cavities of arbitrary shape. We introduce a cylindrical coordinate system
(r,z), with the origin located on the axis of the cavity mouth at the level of the infinite
solid plane. The liquid-gas interface is assumed to remain pinned at the circular edge
of the cavity. The elevation of the free surface over the plane z = 0 is described
by η(r, t), and is assumed to be small compared to the radius of the cavity mouth,
η << a.

When the interface is perturbed, the compression of the gas and the surface ten-
sion of the liquid-air interface provide restoring forces and the interface will start to
oscillate around its equilibrium position, which is assumed to be flat. The oscillating
interface causes a velocity field uuu and pressure field p in the liquid phase (the gas flow
is neglected here). To calculate the oscillation frequency, damping and shape of the
interface we need to couple the normal stress in the liquid, derived from the velocity
field, to the pressure in the gas, which results from the effect of surface tension and
the gas compression and expansion.

We use a linear theory, in which the time-dependence is assumed to be propor-
tional to eζ t , so that η(r, t) = η(r)eζ t , with complex eigenfrequency ζ = iω − β ,
where ω = 2π f is the angular frequency and β the damping coefficient due to viscous
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Figure 7.1: A cavity with an entrapped gas bubble. The radius of the circular cavity
mouth a is indicated, as well as the cylindrical coordinate system (r,z). The pressures
in the gas and in the liquid are pg and p, respectively. The elevation of the free surface
above the (z = 0)-plane is denoted by η(r, t).

dissipation in the liquid. This time-dependence is left implicit in the expressions that
follow. The motion of the liquid-air interface, described by S(r, t) = z−η(r, t) = 0,
is coupled to the velocity field in the liquid via the kinematic condition

∂S
∂ t

+uuu ·∇S = 0. (7.3)

Since we consider a small interface deformation η , we neglect all terms which are of
second order and higher, which leads to a kinematic boundary condition in the form

uz|z=0 = ζ η , 0≤ r/a < 1. (7.4)

The solid is impermeable for the liquid, and therefore we impose along the remainder
of the (z = 0)-plane

uz|z=0 = 0, 1 < r/a < ∞. (7.5)

Furthermore, as there is no slip on the solid surface,

ur|z=0 = 0, 1 < r/a < ∞. (7.6)
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On a clean liquid-gas interface, a no-shear-stress boundary condition applies, since
the gas viscosity is much smaller than the liquid viscosity:

τrz = µ

(
∂ur

∂ z
+

∂uz

∂ r

)
= 0, 0≤ r/a < 1, (7.7)

with µ the dynamic viscosity. The presence of impurities modifies the interfacial
behaviour and may be modelled by a no-slip condition [15]

ur|z=0 = 0, 0≤ r/a < 1. (7.8)

Since the mixed boundary value problem (7.6), (7.7) leads to a mathematical problem
which does not appear to be solvable, we impose the no-slip conditions (7.6), (7.8)
on the entire surface in the following analysis.

The coupling of the pressures in the liquid and the gas occurs via the dynamic
boundary condition at z = 0

pg = p+σC −2 µ
∂uz

∂ z

∣∣∣∣
z=0

, (7.9)

with pg the pressure in the gas bubble and C =−
(
∂ 2

r η +∂rη/r
)

the curvature of the
free surface; the last term on the right-hand side is the viscous normal stress on the
interface. A general relation between the gas volume V and the gas pressure is given
by the polytropic expression

pg

p0
=

(
V0

V

)κ

, (7.10)

with κ the polytropic index; κ = 1 is applicable to isothermal conditions. When the
interface is flat (η = 0), V = V0 and pg = p0, the ambient pressure in the liquid. By
expanding (7.10) for small interface deformations, we find

pg ≈ p0

[
1−κ

(
V
V0
−1
)]

. (7.11)

The gas volume can be found from the interface shape by integration:

V =V0 +2π

∫ a

0
ηrdr =V0

[
1+λ

H
a3

]
, (7.12)

with
H = 2

∫ a

0
rη(r)dr, (7.13)
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proportional to the volume change of the gas due to the interface deformation. Com-
bining (7.11) and (7.12), we obtain

pg = p0

(
1−κλ

H
a3

)
, (7.14)

and the dynamic boundary condition (7.9) becomes

p0

(
1−κλ

H
a3

)
= p−σ

(
∂

2
r η +

1
r

∂rη

)
−2 µ

∂uz

∂ z

∣∣∣∣
z=0

. (7.15)

In the following sections, the pressure in the liquid will be calculated in two limit
cases: potential flow on one hand, as described in Section 7.3, and unsteady Stokes
flow on the other, in Section 7.5. In addition, an estimate of the viscous damping is
obtained using a modified potential flow model, where we calculate the dissipation
in the bulk from the potential-flow solution (Section 7.4). Before we proceed, we
introduce the following dimensionless quantities

r̂ =
r
a
, ẑ =

z
a
, η̂ =

η

a
, û =

√
aρ`

σ
u, ζ̂ =

√
a3ρ`

σ
ζ , p̂ =

a
σ

p, Ĥ =
H
a3 , (7.16)

which we will use from now on, thereby dropping the carets.

7.3 Potential flow

To calculate the liquid pressure used in the dynamic boundary condition (7.15) we
first neglect the influence of viscosity completely. Then, the flow is irrotational. As
the resonance frequency of the system is mainly determined by the inertia in the
liquid, it can be obtained from an inviscid flow model with a fair accuracy, as will be
seen later. In the framework of potential flow theory, the no-slip condition (7.6) at
the solid substrate in combination with either (7.7) or (7.8) cannot be enforced.

7.3.1 Governing equations

For irrotational flow, the velocity field can be written in terms of the potential φ as
uuu = ∇φ , which satisfies the Laplace equation ∇2φ = 0. At the liquid-gas interface φ

has to satisfy the kinematic boundary condition (7.4)

uz|z=0 = ∂zφ |z=0 = ζ η , 0≤ r < 1, (7.17)
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and at the solid substrate the impermeability condition (7.5)

uz|z=0 = ∂zφ |z=0 = 0, 1 < r < ∞. (7.18)

We express the (dimensionless) pressure in the liquid using the linearised Bernoulli
integral

p =
ap0

σ
−ζ φ , (7.19)

and, neglecting the viscous stress, find for the dynamic boundary condition at the
gas-liquid interface (7.15)

PH−∂
2
r η− 1

r
∂rη = ζ φ |z=0 , 0≤ r < 1, (7.20)

with

P =
aκλ p0

σ
, (7.21)

the ratio of the gas stiffness to the surface tension stiffness.

7.3.2 Reduction to an eigenvalue problem

As shown in Appendix A.1, the Hankel transform can be used to reduce (7.17)-(7.20)
to a set of dual integral equations in terms of φ . The solution of this system results in
the following expression for the dynamic boundary condition (7.20)

PH−∂
2
r η− 1

r
∂rη =−ζ

2
∫

∞

0
v(k)J0(kr)dk, (7.22)

with

v(k) =
∫ 1

0
η(s)sJ0(ks)ds. (7.23)

Integration of (7.22) leads to the following eigenvalue problem to be solved for ζ and
η

η(r) =
1
4

PH(r2−1)+ζ
2
∫

∞

0

v(k)
k2 [J0(k)− J0(kr)]dk. (7.24)

To find the solution of this integral equation we expand the interface deformation η

into a Fourier-Bessel series

η(r, t) =
∞

∑
k=1

ck(t)J0( jkr), (7.25)
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with jk denoting the kth zero of the Bessel function J0. Substituting (7.25) into (7.24)
and taking the inner product with rJ0( jnr), we obtain the following generalized eigen-
value problem for the eigenfrequency ζ (see Appendix A.1 for details)

2P
∞

∑
k=1

J1( jk)
jk

J1( jn)
jn

ck +
1
2

cn j2
nJ2

1 ( jn) =−ζ
2

∞

∑
k=1

ckJ1( jk)J1( jn) jk jn f ( jk, jn), (7.26)

with f ( jk, jn) given by (7.56).

7.4 Weak viscous effects

In a real flow, viscous dissipation in both the bulk of the liquid and the boundary layer
on the solid surface dampen the bubble oscillations. The ratio of dissipation in the
boundary layer to dissipation in the bulk is given by a/δ [16], where δ ∼

√
ν/ω is

the viscous boundary layer thickness. If we scale the angular frequency on the basis
of the free bubble Minnaert frequency, ω ∼ (κ p0/ρ`)

1/2 /a, we find that the ratio of
damping in the boundary layer to damping in the bulk is given by

κ p0a2

ρ`ν
2 =

P
λOh2 , (7.27)

with Oh the Ohnesorge number, defined by

Oh =

√
ρ`ν

2

σa
. (7.28)

This dimensionless parameter is a measure of the damping during one period of os-
cillation. In case the bulk dissipation dominates, i.e. for smaller pits, we can use the
potential flow solution to estimate the damping coefficient [16].

To describe the oscillations of the damped system, we use a Lagrangian formu-
lation complemented by the Rayleigh dissipation function. We again express the
interface shape in terms of the Fourier-Bessel series (7.25). The motion of the system
is now given by

∂

∂ t

(
∂L

∂ ċk

)
− ∂L

∂ck
=−Oh

∂R

∂ ċk
, (7.29)

with ċk = ζ ck, L = Ek−Ep the Lagrangian, R the Rayleigh dissipation function,
defined as R = D/2 with D the rate of viscous dissipation in the liquid [17]. To find
an expression for L in terms of ck, we calculate the kinetic energy Ek and poten-
tial energy Ep of the system. The dimensionless kinetic energy of the liquid can be
expressed as [18]

Ek =
1
2

∫
V

u2
i dV =

1
2

∫
A

φ
∂φ

∂xi
nidA, (7.30)
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where nnn represents the unit surface normal directed out of the liquid. Due to the
impermeability condition (7.18), the integral (7.30) reduces to an integral over the
bubble interface:

Ek =−π

∫ 1

0
φ(r,0)∂tη rdr. (7.31)

The potential energy of the system can increase by an increase in area through the
effect of surface tension or by a decrease in volume through compression of the gas

Ep =
∫ A

A0

dA−
∫ V

V0

(pg− p0)dV = π

∫ 1

0
(∂rη)2 rdr+

1
2

πPH2, (7.32)

with P given by (7.21). The rate of viscous dissipation in potential flow reads [18]

D =
1
2

Oh
∫

V

(
∂ui

∂xk
+

∂uk

∂xi

)2

dV = 2Oh
∫

A
ui

∂ui

∂xk
nkdA. (7.33)

By integrating (7.33) over the surface we arrive at

D =−8πOh
∫ 1

0

∂φ

∂ r

∣∣∣∣
z=0

∂rη rdr. (7.34)

Substituting (7.25) into (7.31), (7.32), and (7.34), we can express the kinetic energy,
potential energy, and dissipation in terms of the degrees of freedom ck and ċk as

Ek = π

∞

∑
k=1

∞

∑
l=1

ċkċn jk jnJ1( jk)J1( jn) f ( jk, jn), (7.35)

Ep =
1
2

π

∞

∑
k=1

j2
k c2

kJ2
k ( jk)+2πP

∞

∑
k=1

∞

∑
l=1

ck

jk

cl

jl
J1( jk)J1( jl), (7.36)

D = 8πOh
∞

∑
k=1

∞

∑
l=1

ċkċn jk jnJ1( jk)J1( jn)g( jk, jn). (7.37)

with f ( jk, jn) given by (7.56), and g( jk, jn) given by (7.71). Substituting (7.35)-
(7.37) into (7.29) and replacing ċk by ζ ck, we obtain

2P
∞

∑
k=1

J1( jk)
jk

J1( jn)
jn

ck +
1
2

cn j2
nJ2

1 ( jn) =−ζ
2

∞

∑
k=1

ckJ1( jk)J1( jn) jk jn f ( jk, jn)

−4ζ Oh
∞

∑
k=1

ckJ1( jn)J1( jk) jn jkg( jn, jk). (7.38)

Note that putting Oh to zero in (7.38), i.e. neglecting the viscous dissipation, leads
to exactly the same equation as derived before for potential flow, which reconfirms
(7.26).
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7.5 Unsteady Stokes flow

In the previous sections potential flow was used to calculate the pressure and veloc-
ities in the liquid. On the solid substrate, however, the no-slip boundary condition
(7.6) applies. Hence, a viscous boundary layer develops on the substrate, which can-
not be accounted for in a potential flow model. Therefore, we repeat the calculation
of the liquid pressure using an unsteady Stokes flow model. For small interface defor-
mations η� a, as is the case here, the nonlinear term of the Navier Stokes equations
can be neglected with respect to the unsteady inertia term, and the unsteady Stokes
equations describe the flow in the entire domain [16].

7.5.1 Governing equations

The unsteady Stokes equations in dimensionless form, with the dimensionless quan-
tities as defined in (7.16), read

ζ uuu =−∇p+Oh∇
2uuu, (7.39)

with Oh the Ohnesorge number defined in (7.28). We express the velocity in terms
of a stream function Ψ as

uuu = ∇×
(

1
r

Ψeeeθ

)
=− ∂

∂ z

(
1
r

Ψ

)
eeer +

1
r

∂Ψ

∂ r
eeez. (7.40)

Taking the curl of (7.39), we obtain

ζ ΩΩΩ = Oh∇
2
ΩΩΩ, (7.41)

with vorticity ΩΩΩ = ∇×uuu =−∇2 (Ψ/reeeθ ). As boundary conditions we have again the
kinematic condition (7.4) and impermeability of the substrate (7.5). As mentioned
before, we impose a no-slip condition on the solid (7.6) as well as on the bubble
surface (7.8), to render the mathematical problem tractable. The dynamic boundary
condition now reads

PH−∂
2
r η− 1

r
∂rη = p|z=0 , 0≤ r < 1, (7.42)

with the pressure to be calculated from (7.39). Note that the normal viscous stress
drops out from (7.42) as a consequence of (7.8) which, from the equation of continu-
ity, implies that ∂uz/∂ z = 0 on z = 0.
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7.5.2 Reduction to an eigenvalue problem

The solution to (7.41) can again be expressed in terms of the Hankel transform. Then,
the eigenvalue problem to be solved for ζ , η is given by (details of the calculation
can be found in Appendix A.2)

η(r) =
1
4

PH(r2−1) (7.43)

−
∫

∞

0

v(k)
k2 [J0(k)− J0(kr)]

[
ζ

2 +ζ Oh
(

k2 + k
√

k2 +ζ/Oh
)]

dk, 0≤ r < 1.

Again, we expand the interface deformation η into the Fourier-Bessel series (7.25),
and obtain (see Appendix A.1 for details)

2P
∞

∑
k=1

ck

jk jn
J1( jk)J1( jn)+

1
2

cn j2
nJ2

1 ( jn) = (7.44)

∞

∑
k=1

ck jk jnJ1( jk)J1( jn)
∫

∞

0

J2
0 (s)

( j2
k − s2)( j2

n− s2)

(
ζ

2 +ζ Oh
[

s2 + s
√

s2 +ζ/Oh
])

ds.

7.6 Numerical solution method

To find the resonance frequency and interface shape in the potential flow model, the
generalized eigenvalue problem (7.26) is truncated to K terms and solved numerically
with Mathematica 8 (Wolfram Research) for ζ and ck; see Appendix A.1. We studied
the convergence of the sum (7.25) for the first three modes by taking up to K = 100
terms into account for P = 0 to P = 500. We found that the system converges rapidly:
for the lowest mode K = 3 was already sufficient for accurate reconstruction of the
interface shape. For higher modes, the matrix size increases because more Bessel
functions are required to describe the interface shape: for mode 3, we used K = 6.
The larger the matrix, the more eigenfrequencies can be calculated.

The generalized eigenvalue problem (7.44) for the Stokes flow model has to be
solved iteratively, due to the complexity of the integral. To this end, we split the
integral into three parts, so that the equation to be solved becomes

2P
∞

∑
k=1

ck

jk jn
J1( jk)J1( jn)+

1
2

cn j2
nJ2

1 ( jn) = (7.45)

∞

∑
k=1

ck jk jnJ1( jk)J1( jn)
[
ζ

2 f ( jk, jn)+ζ Oh{g( jk, jn)+h( jk, jn,ζ ,Oh)}
]
,
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with f ( jk, jn) given by (7.56), g( jk, jn) by (7.71), and h( jk, jn) by (7.72). To reduce
(7.73) to a generalized eigenvalue problem that can be solved with Mathematica, we
write d = ζ c, so that the resulting system becomes(

/0 I

2PB+ 1
2C Oh

[
G+H(ζ (i),Oh)

])( c(i+1)

d(i+1)

)
= ζ

(i+1)
(
I /0
/0 −A

)(
c(i+1)

d(i+1)

)
,

(7.46)
with i the iteration number, c a vector with elements ck, /0 the zero matrix , I the unit
matrix, A given by (7.58), B by (7.59), C by (7.60), G by (7.74), and H by (7.75).
The matrices A, G, and H correspond to the three terms in which the integral in (7.44)
is decomposed. The generalized eigenvalue problem (7.46) is solved iteratively with
the modified potential-flow solution used as initial guess ζ (1) in matrix H. With
this initial guess, we evaluate the integral (7.72) numerically, which we then use to
solve (7.46). This step permits an improved estimate ζ (2) of the eigenvalue, which
is substituted again into the matrix H. This procedure is repeated until convergence
is reached, i.e. until the difference in both frequency and damping between the cur-
rent and the previous iteration is less than 0.01% of the current result. Again, we
investigated the influence of the matrix size on the calculation of the eigenfrequency
and interface shape for the lowest three modes by taking a system size up to K = 16.
For the lowest two modes, K = 3 was sufficiently accurate to calculate the eigenfre-
quency, whereas for mode 3, K = 6 was used. Convergence of (7.46) was achieved
after 4 iterations for the three lowest modes; see Appendix A.2 for details. To further
check the convergence of the solutions obtained, we used the potential flow solution
as initial guess, and slowly increased the Ohnesorge number from 0 to Ohs = 0.0303.
Using this method, we obtained the same results for the resonance frequency and the
damping as by starting directly at Ohs with the modified potential flow solution as
initial guess.

7.7 Results

In the generalized eigenvalue problem for ζ , η , only two dimensionless parameters
appear: the ratio of the gas stiffness to the surface tension stiffness, P (7.21), and the
Ohnesorge number Oh (7.28). For a gas pocket with λ = 1 in a 15-µm cylindrical
micropit submerged in water under standard conditions, the corresponding values of
the dimensionless groups are P = Ps = 20.5 and Oh=Ohs=0.0303. In this example,
we find the dimensional resonance frequency for the first three modes in potential
flow to be 121, 274, and 556 kHz, respectively. The first result is not very different
from the frequency estimate (7.1) by Miller & Nyborg [14] which is 151 kHz for the
lowest mode of a 15-µm pit. The interface shape for the first three modes is depicted
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Figure 7.2: The interface shape as calculated from the potential flow model for (a)
P = 20.5, mode 0 (black), mode 1 (blue), and mode 2 (red). (b) The interface shape
for mode 0 with P = 0 (black), 40 (blue), 80 (red), 160 (orange), 320 (green). Note
that for P≥ 80, mode 0 has an extra node in addition to the one at the rim of the pit.

in Fig. 7.2(a). One can see that with these parameter values the largest contribution to
the interface shape of mode 0 comes from the first term in the Fourier-Bessel series
(7.25), whereas for mode 1 the largest contribution comes from the second term, etc.

Figures 7.3, 7.4, and 7.5 show how the resonance frequency and damping coef-
ficient depend on the two dimensionless parameters P and Oh. As expected, both
the damping and frequency increase with the mode number with the result that, after
a generic initial perturbation, the bubble will oscillate the longest at its fundamen-
tal resonance frequency whereas higher frequencies dampen out earlier. The differ-
ence in resonance frequency between the potential flow (PF), modified potential flow
(mPF), and Stokes flow (SF) models is very small which means that, in the parameter
range of interest, the resonance frequency is mainly determined by inertia and can be
obtained from the potential flow model with sufficient accuracy.

In Fig. 7.3(a), the graph of the frequency f = ω/2π versus P for mode 0 shows
that the resonance frequency first increases with P, until it levels off to a dimension-
less value f = 1.72 for P > 200, approximately. In the approximate solution (7.1) by
Miller [14] such a plateau is not observed. Figure 7.4(a) shows graphs of f versus P
for modes 1 and 2. Here, a similar increase in f with P is observed, but the plateau
is reached at larger values of P. Initially, the resonance frequency increases with P
because at larger P it becomes more difficult to change the volume of the gas, and
hence the system becomes stiffer, which leads to a higher resonance frequency. The
reason for the occurrence of a plateau in the frequency lies in the increasing stiffness
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Figure 7.3: (a) The dimensionless frequency f = ω/2π of mode 0 versus the dimen-
sionless parameter P, defined in (7.21), for potential flow (black, solid), modified
potential flow (black, dotted) and Stokes flow (black, dashed) with Oh=0.0303. The
results for potential flow and modified potential flow nearly overlap. For comparison,
the result of Miller & Nyborg [14] (7.1) is also shown (dash-dotted). (b) Dimension-
less damping β versus P for the modified potential flow and Stokes flow models.
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Figure 7.4: (a) The dimensionless frequency f of mode 1 (blue), and mode 2 (red),
versus the dimensionless parameter P, defined in (7.21), for potential flow (solid),
modified potential flow (dotted) and Stokes flow (dashed) with Oh=0.0303. A plateau
in the frequencies similar to that for mode 0 is observed, but it occurs at larger P (not
shown in the figure for mode 2). (b) Dimensionless damping β versus P for the
different cases.
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Figure 7.5: (a) The dimensionless frequency f of mode 0 versus the dimensionless
parameter P, defined in (7.21), for modified potential flow (dotted), and Stokes flow
(dashed) with Oh=0.01515 (blue), Oh=0.0303 (black), and Oh=0.0606 (red). (b)
Dimensionless damping β versus P for the different cases.

of the gas. As P increases and the system becomes stiffer, it becomes more difficult to
decrease the gas volume change H, as defined in (7.13), and the system responds by
increasing the area of the interface instead (see Fig. 7.2(a)). To further decrease the
volume change, at some point an extra node has to appear in the interface shape, as
can be seen in Fig. 7.2(a) for P≥ 80. This node is pushed towards the axis of the pit
as P is increased further. In this way, the interface area increases more and more, and
the net volume change due to the surface elevation eventually tends to zero, which
means that V → V0. Figure 7.6 shows that this decrease in the amplitude of the vol-
ume oscillations occurs in such a way that the product PH tends to a constant value.
Hence, the resonance frequency levels off, and the system eventually oscillates with
a fixed interface shape. The interface shapes corresponding to modes 1 and 2 are
depicted in Fig. 7.7. For mode 1, the extra node appears around P ' 500, whereas
for mode 2, it will occur at a larger P.

The parameter P also has an effect on the damping coefficient as shown in Figs.
7.3(b) and 7.4(b). For mode 0 the damping coefficient increases with P, until a final
plateau is reached. For mode 1, however, a minimum is observed and the plateau is
reached for larger P. For mode 2, the damping decreases and reaches a minimum
beyond the maximum value of P shown in the graph. The presence of a minimum
could be explained as follows: as the stiffness of the gas increases with P, the relative
volume change decreases, which leads to a smaller liquid displacement and viscous
energy dissipation. However, as the frequency increases, the damping increases as
well. These two effects compete, and give rise to a minimum in the damping coeffi-
cient. The plateau is reached at larger P, when the product PH tends to a finite value
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Figure 7.6: The relative stiffness of the gas pocket times its volume change, PH,
versus P, for mode 0 (solid) and mode 1 (dashed). Initially PH increases, until a
maximum is reached, then it tends to a finite value.

(see also Fig. 7.6). The difference in damping coefficients between the mPF and SF
models is larger for the higher modes. One also observes that, for some values of P,
the mPF damping is even larger than the SF damping. This behaviour is due to the
difference in velocity profiles between the mPF and SF, and is also known to occur
for shape oscillations of drops and bubbles [19].

Whereas P has a large influence on the resonance frequency of the pit, the influ-
ence of Oh is only very small as shown in Fig. 7.5. The influence of the Ohnesorge
number on the damping coefficient is of course large.

7.8 Conclusion

The resonance frequency, damping and interface shape of a gas pocket entrapped on
the surface of an submerged solid have been calculated. To describe the hydrody-
namic problem in the liquid domain, both a potential and an unsteady Stokes flow
model have been used. The potential flow model gives a reliable prediction of the
resonance frequency of the gas pocket, which is mainly determined by inertia in the
liquid. To derive an estimate for the damping of the oscillations, the bulk dissipa-
tion was calculated from the potential flow model. A more accurate prediction of
the damping was derived based on the unsteady Stokes flow model, which is valid
throughout entire domain and therefore includes the contributions of both the bound-
ary layer and the bulk. However, the Stokes flow results will overestimate the real
damping somewhat in the case that the liquid-gas interface is clean: in the method
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Figure 7.7: The interface shape as calculated from the potential flow model with
Oh=0.0303 for P = 0 (black), P = 250 (blue), and P = 500 (red) for (a) mode 1 and
(b) mode 2. Note that, for P = 500, mode 1 has developed an extra node.

described here, a no-slip condition on the free surface was used, which leads to some
additional dissipation.

The resonance frequency, damping and interface shape of an entrapped gas pocket
depend on two dimensionless numbers: the ratio P of the gas stiffness to the surface
tension stiffness, defined in (7.21), and the Ohnesorge number (7.28), which repre-
sents the relative importance of viscous forces. In general, the resonance frequency
increases with increasing gas stiffness. However, an unexpected feature of our results
is that when the volume stiffness of the gas pocket greatly exceeds the surface stiff-
ness, the normal modes develop an extra node and the resonance frequency tends to
an asymptotic value.

Appendix

A.1 Potential flow solution

To obtain a solution for the velocity potential φ we set

∂zφ =
∫

∞

0
kΦ(k)J0(kr)e−kzdk (7.47)

and, upon integration, find that

φ =−
∫

∞

0
Φ(k)J0(kr)e−kzdk. (7.48)
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Using the boundary conditions (7.17) and (7.18) and the orthogonality relation for
Bessel functions we obtain∫

∞

0

∫
∞

0
krΦ(k)J0(kr)J0(hr)drdk =

∫
∞

0
Φ(k)δ (h− k)dk = ζ

∫ 1

0
η(r)rJ0(hr)dr,

(7.49)
and, therefore,

Φ(h) = ζ

∫ 1

0
η(r)rJ0(hr)dr = ζ v(h). (7.50)

Thus
φ(r,0) =−ζ

∫
∞

0
v(k)J0(kr)dk. (7.51)

Substituting this result into (7.20) we find (7.22).
The next step is to express the interface deformation η in terms of the Fourier-

Bessel series (7.25), to obtain

v(s) =
∞

∑
k=1

ck

∫ 1

0
r J0(sr)J0( jkr)dr =

∞

∑
k=1

ck
jkJ0(s)J1( jk)

j2
k − s2 , (7.52)

H = 2
∞

∑
k=1

ck

∫ 1

0
rJ0( jkr)dr = 2

∞

∑
k=1

ck

jk
J1( jk). (7.53)

Substitution into (7.24) leads to
∞

∑
k=1

ckJ0( jkr)=
1
2

P
∞

∑
k=1

ck

jk
J1( jk)(r2−1)+ζ

2
∞

∑
k=1

ck jkJ1( jk)
∫

∞

0

[J0(s)− J0(sr)]J0(s)
( j2

k − s2)s2 ds.

(7.54)
To obtain an equation for each of the unknowns, we multiply (7.54) by rJ0( jnr) and
integrate between 0 and 1, to find

2P
∞

∑
k=1

ck

jk jn
J1( jk)J1( jn)+

1
2

cn j2
nJ2

1 ( jn)

=−ζ
2

∞

∑
k=1

ck jkJ1( jk)
∫

∞

0

J0(s)
j2
k − s2 ds

∫ 1

0
rJ0(sr)J0( jnr)dr

=−ζ
2

∞

∑
k=1

ckJ1( jk) jk jnJ1( jn) f ( jk, jn), (7.55)

with

f ( jk, jn) =
∫

∞

0

J2
0 (s)

(s2− j2
k)(s

2− j2
n)

ds (7.56)

=

{
4
π

1
j2
k− j2

n

[
2F3(1,1; 3

2 ,
3
2 ,

3
2 ;− j2

n)− 2F3(1,1; 3
2 ,

3
2 ,

3
2 ;− j2

k)
]
, if k 6= n,

32
27π 2F3(2,2; 5

2 ,
5
2 ,

5
2 ;− j2

k), if k = n,
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where 2F3 is the hypergeometric function [20]. After truncation of the Fourier-Bessel
series (7.25) to K terms, we can express the eigenvalue problem in matrix form as(

ζ
2A+2PB+

1
2
C

)
c = 0, (7.57)

with A a K×K-matrix with coefficients

Akn = J1( jk)J1( jn) jk jn f ( jk, jn), (7.58)

B a K×K-matrix with coefficients

Bkn =
J1( jk)J1( jn)

jk jn
, (7.59)

and C a K×K diagonal matrix with coefficients

Ckn = j2
k J2

1 ( jk)δkn, (7.60)

and c a K-array with coefficients ck. The generalized eigenvalue problem (7.57) is
the solved with Mathematica 8 (Wolfram Research).

A.2 Stokes flow solution

The general solution to (7.41) in terms of the Hankel transform reads

Ω(r,z) =
∫

∞

0
G(k)J1(kr)e−z

√
k2+ζ/Ohdk, (7.61)

with G to be determined from the boundary conditions (7.4), (7.5), (7.6), and (7.8).
From (7.61) we can determine an expression for stream function Ψ using

ΩΩΩ =−∇
2
(

Ψ

r
eeeθ

)
. (7.62)

The homogeneous solution of (7.62) reads

Ψh(r,z) = r
∫

∞

0
F(k)J1(kr)e−kzdk, (7.63)

with F to be determined from the boundary conditions. The particular solution can
be found from (7.41):

ΩΩΩ =−∇
2
(

Ψp

r
eeeθ

)
=

Oh
ζ

∇
2
ΩΩΩ, (7.64)
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and hence
Ψp(r,z) =−r

Oh
ζ

∫
∞

0
G(k)J1(kr)e−z

√
k2+ζ/Ohdk. (7.65)

Once we know Ψ = Ψh +Ψp, we can find expressions for the velocity field

ur(r,z) =
∫

∞

0
kF(k)J1(kr)e−kzdk− Oh

ζ

∫
∞

0

√
k2 +ζ/OhG(k)J1(kr)e−z

√
k2+ζ/Ohdk,

uz(r,z) =
∫

∞

0
kF(k)J0(kr)e−kzdk− Oh

ζ

∫
∞

0
kG(k)J0(kr)e−z

√
k2+ζ/Ohdk. (7.66)

Expressions for F and G can now be obtained from (7.4), (7.5), (7.6), and (7.8)

F(k)− Oh
ζ

G(k) = ζ v(k),

kF(k)− Oh
ζ

G(k)
√

k2 +ζ/Oh = 0,

with v(k) given by (7.23), which give

G(k) = v(k)
(

k2 + k
√

k2 +ζ/Oh
)
, (7.67)

F(k) = v(k)
[

ζ +
Oh
ζ

(
k2 + k

√
k2 +ζ/Oh

)]
. (7.68)

The pressure in the liquid can now be obtained from (7.39). Using (7.40) and (7.41)
one finds that

∇p =−ζ

(
∇× Ψh

r
eeeθ

)
, (7.69)

and hence the liquid pressure reads

p(r,z) = ζ

∫
∞

0
F(k)J0(kr)e−kzdk. (7.70)

This results evaluated at z = 0 is then substituted into (7.42) to find (7.43) by integra-
tion. Substitution of the Fourier-Bessel series (7.25) results in (7.44).

Due to the complexity of the integral in (7.44), the system has to be solved itera-
tively. To this end, we split the integral into parts. The resulting equation is given by
(7.46) with f given by (7.56), g by

g( jk, jn) =
∫

∞

0

s2J2
0 (s)

(s2− j2
k)(s

2− j2
n)

ds (7.71)

=

{
4
π

1
j2
k− j2

n

[
j2
n2F3(1,1; 3

2 ,
3
2 ,

3
2 ;− j2

n)− j2
k 2F3(1,1; 3

2 ,
3
2 ,

3
2 ;− j2

k)
]
, if k 6= n,

− 4
π 2F3(1,2; 3

2 ,
3
2 ,

3
2 ;− j2

k), if k = n,
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Figure 7.8: (a) The increment in angular frequency ω of mode 0 versus iteration
number i illustrating convergence of the solution process. (b) Increment of damping
β versus iteration number i. The solution is shown for different matrix sizes: 1× 1
(solid) 2×2 (dashed) 3×3 (dotted).

and h by

h( jk, jn,ζ ,Oh) =
∫

∞

0

sJ2
0 (s)

( j2
k − s2)( j2

n− s2)

√
s2 +ζ/Ohds. (7.72)

After truncation of the Fourier-Bessel series to K terms, the resulting equation
(7.46) in matrix form becomes{(

ζ
(i+1)

)2
A+2PB+

1
2
C+ζ

(i+1)Oh
[
G+H(ζ (i),Oh)

]}
c(i+1) = 0, (7.73)

with i the iteration number, A given by (7.58), B given by (7.59), and C given by
(7.60); G is a K×K-matrix with coefficients

Gkn = J1( jk)J1( jn) jk jng( jk, jn), (7.74)

and H is a K×K-matrix with coefficients

Hkn = J1( jk)J1( jn) jk jnh( jk, jn,ζ (i),Oh). (7.75)

Figure 7.8 shows that for mode 0, convergence is reached within 4 iterations, irre-
spective of the matrix size.

References

[1] D. L. Miller, “Frequency relationships for ultrasonic activation of free mi-
crobubbles, encapsulated microbubbles, and gas-filled micropores”, J. Acoust.
Soc. Am. 104, 2498–2505 (1998).



126 REFERENCES

[2] L. A. Kuznetsova, S. Khanna, N. N. Amso, W. T. Coakley, and A. A. Doinikov,
“Cavitation bubble-driven cell and particle behavior in an ultrasound standing
wave”, J. Acoust. Soc. Am. 117, 104–112 (2005).

[3] P. V. Zinin and J. S. Allen, “Deformation of biological cells in the acoustic field
of an oscillating bubble”, Phys. Rev. E 79, 021910 (2009).

[4] M. Postema and O. H. Gilja, “Ultrasound-directed drug delivery”, Curr. Pharm.
Biotechnol. 8, 335–361 (2007).

[5] R. J. Browning, H. Mulvana, M.-X. Tang, J. V. Hajnal, D. J. Wells, and R. J.
Eckersley, “Effect of albumin and dextrose concentration on ultrasound and
microbubble mediated gene transfection in vivo”, Ultrasound Med. Biol. 38,
1067–1077 (2012).

[6] R. H. Liu, J. N. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, “Bubble-
induced acoustic micromixing”, Lab on a Chip 2, 151–157 (2002).

[7] D. F. Rivas, A. Prosperetti, A. G. Zijlstra, D. Lohse, and H. J. G. E. Gardeniers,
“Efficient sonochemistry through microbubbles generated with micromachined
surfaces”, Angew. Chem. Int. Edit. 49, 9699–9701 (2010).

[8] N. Bremond, M. Arora, C.-D. Ohl, and D. Lohse, “Controlled multibubble sur-
face cavitation”, Phys. Rev. Lett. 96, 224501 (2006).

[9] B. M. Borkent, S. Gekle, A. Prosperetti, and D. Lohse, “Nucleation threshold
and deactivation mechanisms of nanoscopic cavitation nuclei”, Phys. Fluids 21,
102003 (2009).

[10] D. L. Miller, “Experimental investigation of the response of gas-filled microp-
ores to ultrasound”, J. Acoust. Soc. Am. 71, 471–476 (1982).

[11] E. A. Neppiras, W. L. Nyborg, and D. L. Miller, “Non-linear behavior and sta-
bility of trapped micron-sized cylindrical gas bubbles in an ultrasonic field”,
Ultrasonics 21, 109–115 (1983).

[12] H. Rathgen, K. Sugiyama, C.-D. Ohl, D. Lohse, and F. Mugele, “Nanometer-
resolved collective micromeniscus oscillations through optical diffraction”,
Phys. Rev. Lett. 99, 214501 (2007).

[13] M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation”, Ann. Rev.
Fluid Mech. 9, 145–185 (1977).



REFERENCES 127

[14] D. L. Miller and W. L. Nyborg, “Theoretical investigation of the response of
gas-filled micropores and cavitation nuclei to ultrasound”, J. Acoust. Soc. Am.
73, 1537–1544 (1983).

[15] B. Cuenot, J. Magnaudet, and B. Spennato, “The effects of slightly soluble
surfactants on the flow around a spherical bubble”, J. Fluid Mech. 339, 25–53
(1997).

[16] G. K. Batchelor, An introduction to fluid dynamics (Cambridge university press)
(2000).

[17] L. D. Landau and E. M. Lifshitz, Fluid mechanics, 2nd edition (Elsevier)
(2004).

[18] H. Lamb, Hydrodynamics, 6 edition (Dover publications) (1945).

[19] A. Prosperetti, “Normal-mode analysis for the oscillations of a viscous liquid
drop in an immiscible liquid”, J. Mec. 19, 149–181 (1980).

[20] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover,
New York) (1968).



128 REFERENCES



8
Summary and Outlook

When a suspension drop evaporates, it leaves behind a drying stain. In order to either
prevent ring-stain formation or to be able to control and use the patterns formed by
drying drops, one needs to understand the basic physics of evaporating drops and their
internal fluid flow. In this thesis we focused on the fundamentals of drop evaporation,
evaporation-driven flow in drying drops, and the subsequent particle transport and
deposition. We used a simple model system: a macroscopic sessile water drop that
evaporates under atmospheric conditions and contains spherical polystyrene particles.

In Chapter 2 we studied the evaporation of water drops on superhydrophobic
carbon nanofibre substrates. On these substrates, the contact line of a drop remains
pinned, and hence the evaporation occurs in the constant contact-area mode. We
found that the evolution of the rate of mass loss and contact angle of the drops is
accurately described by a diffusion-based model for the entire range of contact angles
(0−150◦). Hence, the evaporation of macroscopic drops from these substrates under
atmospheric conditions is quasi-static, diffusion-driven and thermal effects play no
role. Furthermore, we have shown that evaporation occurs in a universal way for all
drop sizes and initial contact angles.

The evaporative flux from the drop surface drives a flow inside the drying drop.
The nature of this flow close to the contact line of the drop has been addressed in
Chapter 3. We derived self-similar solutions to the Stokes flow near the contact line,
by approximating the local drop shape by a wedge geometry. We found that there are
three mechanisms that can drive the flow in the wedge: the evaporative flux from the
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drop surface, the downward motion of the liquid-air interface when the contact line
is pinned, and an eigenmode contribution that satisfies the homogeneous boundary
conditions and can give rise to viscous corner eddies. Which of the three mech-
anisms is asymptotically dominant depends on the contact angle: below a critical
angle of 133.4◦ the evaporative-flux driven solution dominates, for larger angles the
eigenmode flow is dominant. We found that for small contact angles (θ � 90◦) the
velocity field in the entire drop is accurately described in the lubrication approxima-
tion, all the way down to the contact line where the evaporative flux diverges. For
larger contact angles, the flow structure becomes more complicated and the lubrica-
tion model can no longer be applied. For contact angles larger than 126◦ we even
observed sequences of wedge-like flow structures in the drop. In order to know the
size of these convection rolls and to determine the strength of the eigenmode flow, a
numerical simulation of the flow in the entire drop would have to be performed.

In Chapter 4 we consider an evaporating drop on a liquid subphase, on which the
contact line is moving. For pinned contact lines, the downward motion of the liquid-
air interface gives rise to a flow. On a liquid subphase however, there is a contribution
from the receding motion of the contact line. We found that this moving contact-
line contribution dominates both the evaporative-flux driven flow and the eigenmode
flow when the contact angle between the drop and the horizontal surface of the liquid
subphase is smaller than 90◦. In contrast to a drop on a solid substrate, the eigenmode
contribution to the flow on a liquid subphase is found to be always subdominant. The
flow in the evaporating drop also generates a flow in the liquid subphase. The ratio
of viscosities of the two liquids determines the coupling between the two flows. We
observed sequences of wedge-like flow structures similar to those found in a drying
drop on a solid. However, these flow structures are not only present in the drop itself
but also in the liquid subphase.

A fourth contribution to the flow in a drying drop can be generated by Marangoni
stresses at the liquid-air interface. These stresses arise from temperature –and hence
surface tension– gradients on the liquid-air interface, due to the non-uniform evapora-
tive flux from the drop surface. The resulting Marangoni flow adds to the evaporation-
driven flow. We analysed the importance of the Marangoni flow in the asymptotic re-
gion close to the contact line, and found that sufficiently close to the contact line the
Marangoni effect is subdominant and the evaporation-driven flow always wins. How-
ever, the cross-over length scale is of the order of 10 nm for a millimetre-sized drop
with a contact angle of order unity. This means that the Marangoni-effect should sig-
nificantly alter the velocity field inside the drying drop. One can add the Marangoni
flow to the other flow solutions in the wedge following the method of Ristenpart et
al. [1]. For water drops, however, the Marangoni effect has not been observed ex-
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perimentally [2, 3]. This absence of Marangoni flow in drying water drops is still not
entirely understood, but could be due to the presence of surfactants [2].

The nature of the flow inside a drying colloidal suspension drop determines the
structure of the drying stains. When the contact line of the drying drop is pinned,
ring-shaped stains form during drop evaporation. In Chapter 5 we studied the dy-
namics of this ring-stain formation, and showed that the structure of the drying stain
originates from a competition between particle diffusion and convection. We used
the lubrication approximation to model the flow inside the drying drop, and found
that the enormous increase in particle speed during the last moments of the drop life
is caused by the decreasing drop height. Particles that arrive at the contact line during
this rush-hour phase form a disordered pattern, whereas particles that arrive earlier, at
low speed, form highly ordered crystalline patterns. Within this crystalline phase, we
observed transitions from hexagonal to square particle packings, which we attributed
to the confinement of the particles by the glass slide and the liquid-air interface. By
controlling not only the particle size but also the evaporation rate and contact angle of
the drop, and hence the internal flow, one can use evaporation to generate large-scale
colloidal crystals.

Three-dimensional ordered structures of colloidal particles were obtained in Chap-
ter 6, where we studied drying drops with moving contact lines. We used a special
type of superhydrophobic substrate that consists of pillars with some overhang, so
that the drops remain in the Cassie-Baxter state during the entire evaporation process.
The evaporation of drops from these substrates resulted in soccer-ball like spherical
structures that consist of highly-ordered colloidal particles. Similar to the coffee
stains studied in Chapter 5, we found that the particle ordering in these structures is
determined by the competition between particle diffusion and convection. The con-
vection in this case is caused by the inward motion of the liquid-air interface. We
have shown that the ordering of the particles in the soccer balls depends on the num-
ber of particles in the system, and the diffusion constants for the particles in the liquid
and for the vapour in the surrounding air. The final structures that form can hence be
controlled by tuning the evaporation rate of the drops.

The three-dimensional arrangement of the particles inside the microscopic soccer
balls is not entirely understood. In this system, the liquid-air interface “collects” the
colloidal particles while moving inwards. Hence, one expects a shell of particles to
form on the surface of the drop. When the drop looses volume due to the evaporation,
this shell could buckle, which would lead to hollow structures [4]. The soccer balls
we find are entirely solid and show a very high packing fraction, which indicates
there are no cavities inside. At present, it is not understood what happens to the
particles once they collect at the liquid-air interface, and under what conditions shell
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formation occurs. In addition, it is not clear from where the crystal nucleation in the
soccer balls starts: in the bulk liquid, at the liquid-air interface or at the micropillars.
The size of the crystalline domains is not known, since we have only inspected the
surface of the balls and the global packing fraction. It would be interesting to analyse
the internal structure of the balls in more detail, e.g. by making straight cuts through
the bulk of the balls or by using X-ray techniques.

Finally, in Chapter 7 we investigated the inverse of a liquid drop in air: an air bub-
ble in liquid. We studied the dynamic response of gas bubble entrapped in a cavity
on a submerged solid, and calculated the interface shape and resonance frequency of
such a bubble when it is perturbed by an acoustic field. We found that the resonance
frequency and interface shape depend on two dimensionless parameters: the ratio of
the gas stiffness to the surface tension stiffness, and the Ohnesorge number, repre-
senting the relative importance of viscous forces. The resonance frequency of such a
micropit bubble can accurately be predicted by a potential flow model. To obtain an
estimate for the damping of the oscillations, a Stokes flow model is required.

We conclude this thesis by indicating possible directions for future work. We
have demonstrated that for macroscopic drops under atmospheric conditions the evap-
oration rate is governed by the diffusion of vapour in the surrounding air. However,
under slightly different conditions, other mechanisms could influence the evaporation
rate of a sessile drop, such as the ambient pressure [5], the thermal properties of the
liquid and the substrate [6, 7], or the transfer rate of molecules across the liquid-air in-
terface [8, 9]. During the evaporation of a sessile drop all these processes play a role,
but the evaporation rate will be determined by the slowest one. Despite the fact that
in literature all these different mechanisms have been described, the exact regimes
where each mechanism dominates have never been clearly established. Hence, what
is still lacking is a description of the complete phase space of an evaporating drop.

An additional complication is that the relative importance of the different evap-
oration mechanisms will depend on the distance to the contact line. Close to the
contact line, the diffusive evaporative flux from the drop surface diverges for con-
tact angles below 90◦ [10]. It remains an open question what mechanism regularizes
this singularity in the evaporative flux. Several regularizing mechanisms could play a
role, such as the Kelvin effect [11], the mean free path of the vapour molecules (see
the discussion in Chapter 3), or the presence of a precursor film on complete wetting
substrates [12].

In this thesis, we have mainly been concerned with drops with pinned contact
lines. An additional complication arises when the contact line recedes during evapo-
ration. For moving contact lines, one has to distinguish between two different cases:
partial wetting and complete wetting. For partially wetting substrates, the moving
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contact-line solution by Huh & Scriven [13] can be superimposed on the evaporation-
driven solution. During evaporation of the drop, the contact line will recede with a
contact angle close to its equilibrium value, because the flow inside the drying drop
does not generate a large enough stress to substantially deform the interface. For
complete wetting the situation is totally different: the equilibrium angle is equal to
zero and will never be reached. In this case, the tendency of the drop to spread is
in competition with the evaporation and the contact angle remains finite. This poses
a challenging problem: in the description of a drying drop on a complete wetting
substrate the drop shape, internal fluid flow and evaporative flux are all coupled, and
the local solutions close to the contact line depend on the global evaporation charac-
teristics. Wetting in the presence of drying is therefore still subject of ongoing work
[12, 14–17], and no consensus on the evolution of the drop radius, the apparent con-
tact angle and the width of the contact line region has been reached. We are currently
working on a local similarity solution for the contact line region that captures the
behaviour of the drying drop in complete wetting on small scales.

Our analytical model of the flow in a drying drop predicts interesting flow struc-
tures near the contact line for large contact angles. We hope that our work will stim-
ulate new experiments to measure, e.g. by µPIV, the velocity field in an evaporating
drop with a contact angle on the scale where the convection rolls occur. It will also
be interesting to study how these different flow structures affect the particle depo-
sition. It has been demonstrated that convection rolls in an evaporating drop due
to the Marangoni effect may significantly alter the deposition pattern and that this
additional circulation could even prevent the coffee-stain effect [2].

In the present work, we have shown that there are various ways to influence the
deposition patterns formed by evaporating drops, by controlling the internal fluid
flow, the evaporation rate, the contact angle of the drops, the contact-line motion,
the structure of the substrate that is used, the particle size and number of particles in
the system. However, we have not yet revealed the details of the dynamical process
of particle deposition within the drying stains or soccer balls. A crucial factor in
the particle deposition is the interaction of the particles with the liquid-air interface
and with each other. These interactions can for example be modified by changing
the particle shape [18], the salt concentration in the liquid to modify the electrostatic
interactions [19], or wetting properties of the particles [20]. Recently, it has been
shown that the deposit growth process strongly depends on the particle shape [21].
An interesting direction for future research is to study this final stage of the deposition
dynamics in more detail: how does the dynamical process of particle ordering occur
in three dimensions?
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Samenvatting

Als een vloeistofdruppel waarin deeltjes zijn opgelost opdroogt, ontstaat er een karak-
teristiek patroon. Iedereen kent bijvoorbeeld de donkere kringen die achterblijven
op het tafelblad nadat je koffie of thee hebt gemorst. Dit alledaagse verschijnsel is
eigenlijk heel opmerkelijk: de koffiedeeltjes, die oorspronkelijk gelijkmatig over de
druppel verdeeld waren, hopen zich uiteindelijk allemaal op in een ringvormig pa-
troon. Dit coffee-stain effect komt niet alleen thuis voor, maar ook in allerlei indus-
triële processen. In de coating- en printingindustrie vormen niet-uniform opdrogende
druppels van een suspensie een groot probleem. De industrie kan echter ook handig
gebruik maken van het coffee-stain effect. De verdamping van druppels met daarin
opgeloste colloı̈dale deeltjes biedt de mogelijkheid kleine structuren te maken op een
schaal waarop je de deeltjesdepositie niet meer rechtstreeks kan manipuleren. Om
gebruik te kunnen maken van het coffee-stain effect of het juist te voorkomen, is het
van belang om te begrijpen hoe deeltjestransport in opdrogende druppels plaatsvindt.
Hiertoe is fundamentele kennis nodig over druppelverdamping, de vloeistofstroming
in verdampende druppels en het transport van deeltjes.

In dit proefschrift hebben we de fysica van verdampende druppels bestudeerd
aan de hand van een eenvoudig modelsysteem: een macroscopische waterdruppel
die onder atmosferische conditities verdampt vanaf een oppervlak. In deze druppel
losten we kleine colloı̈dale deeltjes op en bestudeerden de gevormde patronen.

In hoofdstuk 2 hebben we de verdamping van druppels vanaf een superhydro-
foob oppervlak bestaande uit koolstofnanovezels bestudeerd. Op dit type opper-
vlak verplaatst de contactlijn van de druppels zich niet tijdens de verdamping, ter-
wijl de contacthoek van de druppel steeds kleiner wordt. Het bleek dat deze afname
van contacthoek en druppelmassa nauwkeurig beschreven kon worden met een dif-
fusiemodel. Hieruit maakten we op dat de verdamping van waterdruppels op dit type
oppervlakken quasistatisch en diffusiegedreven is en dat thermische effecten een ver-
waarloosbare invloed hebben op de verdampingssnelheid.

De verdampingsflux vanaf het oppervlak van een opdrogende druppel leidt tot een
vloeistofstroming binnenin de druppel. Hoe deze stroming er precies uitziet hebben
we bestudeerd in hoofdstuk 3. We hebben laten zien dat er gelijkvormigheidsoplos-
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singen bestaan voor de vloeistofstroming dichtbij de contactlijn van de druppel. Er
zijn drie mechanismes die stroming kunnen genereren. Allereerst natuurlijk de ver-
dampingsflux van het druppeloppervlak zelf. De verdamping zorgt er echter ook voor
dat het grensvlak tussen de druppel en de omringende lucht naar beneden beweegt.
Deze grensvlakbeweging werkt als een dichtklappend scharnier: het scharnier duwt
de vloeistof van de contactlijn weg. Ten derde is er een zogenaamde “eigenmodus”-
bijdrage aan de vloeistofstroming bij de contactlijn. Deze eigenmodusoplossing vol-
doet aan de homogene randvoorwaarden en kan resulteren in viskeuze wervelingen
in de stroming. Het is afhankelijk van de contacthoek van de druppel welke van
deze drie stromingsmechanismen het sterkst is. Voor contacthoeken lager dan een
kritische waarde van 133.4◦ is de verdampingsgedreven oplossing het sterkst, terwijl
voor grotere hoeken de eigenmodusoplossing de stroming domineert.

In hoofdstuk 4 hebben we gekeken naar wat er gebeurt als een druppel niet vanaf
een vast, maar vanaf een vloeibaar oppervlak verdampt. In dat geval is het oppervlak
niet alleen vervormbaar, maar genereert de verdamping van de druppel ook een stro-
ming in het vloeibare oppervlak. De contactlijn van de druppel zit niet langer vast
aan het substraat, maar beweegt naar binnen toe. Deze terugtrekkende contactlijn
geeft een bijdrage aan de stroming in de druppel, evenals de verdampingsflux van het
oppervlak en de eigenmodusoplossing. De eigenmodusoplossing blijkt echter voor
alle contacthoeken subdominant te zijn. Voor contacthoeken tussen de druppel en
het horizontale vloeibare oppervlak die kleiner zijn dan 90◦ domineert de bijdrage
van de terugtrekkende contactlijn de stroming; voor grotere contacthoeken is de ver-
dampingsflux dominant. Hoeveel stroming de verdampende druppel in het vloeibare
oppervlak genereert is afhankelijk van de verhouding in de viscositeit tussen de twee
vloeistoffen. Afhankelijk van deze viscositeitsverhouding vindt men dezelfde soort
terugstromingsstructuren als beschreven in hoofdstuk 3, maar dan in beide vloeistof-
fases.

Hoe de vloeistofstroming in een verdampende druppel er precies uitziet bepaalt
ook hoe het transport van in de druppel opgeloste deeltjes plaatsvindt. Als de con-
tactlijn van de druppel vastzit aan het oppervlak ontstaan de kringvormige patronen
die we kennen van opdrogende koffie- en theedruppels. In hoofdstuk 5 hebben we de
dynamica van deze kringvorming bestudeerd. We hebben aangetoond dat de struc-
tuur van de gevormde kringen afhankelijk is van de competitie tussen deeltjesdiffusie
en -convectie tijdens het opdrogen van de druppel. Tijdens de laatste fase van de
druppelverdamping neemt de snelheid waarmee deeltjes naar de contactlijn bewe-
gen enorm toe. Wanneer deeltjes met een hoge snelheid bij de contactlijn aankomen
hebben ze geen tijd om zich te rangschikken in een geordend patroon en ontstaat een
wanordelijke structuur. Deeltjes die vroeg in het verdampingsproces aankomen, met



139

lage snelheid, hebben daarentegen voldoende tijd om zich door middel van Brownse
beweging te ordenen. In dat geval ontstaat een geordende, kristallijne structuur. De
buitenste, bij lage snelheid gevormde delen van de deeltjeskring zijn dus geordend,
terwijl verder naar binnen een wanordelijk patroon te zien is. Het gevormde patroon
kan worden beı̈nvloed door de verdampingssnelheid van de druppel en de deeltjes-
grootte, en daarmee de tijd die deeltjes hebben om zich te ordenen, te controlen.

Wanneer de contactlijn van een opdrogende druppel niet vastgepind zit maar vrij
kan bewegen, kunnen zich heel andere patronen van deeltjes vormen. In hoofdstuk 6
lieten we een druppel verdampen vanaf een speciaal soort superhydrofoob substraat,
bestaande uit kleine pilaartjes. Tijdens de verdamping bleef de druppel bovenop
deze pilaartjes zitten, zoals een fakir op een spijkerbed, terwijl de contactlijn zich
naar binnen bewoog. Aan het eind van het verdampingsproces bleken alle colloı̈dale
deeltjes die in de druppel zaten zich te hebben gegroepeerd in een balletje met een
zeer grote dichtheid. De stapeling van deeltjes in deze balletjes was dan ook bijna
perfect. Opnieuw bleek de rangschikking van de deeltjes het resultaat te zijn van
een competitie tussen deeltjesdiffusie en -convectie. De convectieve beweging is
in dit geval afkomstig van de inwaartse beweging van het druppeloppervlak, dat de
deeltjes naar binnen duwt. Door de verdampingssnelheid van de druppel en het aantal
deeltjes in de druppel te controleren kan men de rangschikking van deeltjes in het
balletje beı̈nvloeden. De in hoofdstuk 6 beschreven methode kan dus gebruikt worden
om minuscule driedimensionale geordende structuren te maken met verdampende
druppels.

In hoofdstuk 7 hebben we gekeken naar het omgekeerde van een druppel in lucht:
een bel in vloeistof. We bestudeerden bellen die zijn ingevangen in een holte op een
oppervlak dat is ondergedompeld in een vloeistof en berekenden de reactie van zo’n
bel op een drukgolf. We hebben een model gemaakt om de vorm van het beloppervlak
en de resonantiefrequentie van de bel te bepalen. Deze resonantiefrequentie en de
vorm van het oppervlak bleken te worden bepaald door twee dimensieloze parame-
ters: de verhouding tussen de stijfheid van het gas in de bel en de stijfheid van het
beloppervlak en het Ohnesorgegetal, dat een maat is voor de invloed van viskeuze
krachten. De resonantiefrequentie van de bel kon nauwkeurig bepaald worden met
een potentiaalstromingsmodel. Voor het berekenen van de demping van de beltril-
lingen moest een Stokesstromingsmodel gebruikt worden.
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